-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSqueezeNet3D.py
106 lines (91 loc) · 4.08 KB
/
SqueezeNet3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from .Shift3D import Shift3DLayer
from .utils import *
class Fire(nn.Module):
def __init__(self, inplanes, squeeze_planes,
expand1x1_planes, expand3x3_planes,
use_bypass=False):
super(Fire, self).__init__()
self.use_bypass = use_bypass
self.inplanes = inplanes
self.relu = nn.ReLU(inplace=True)
self.squeeze = nn.Conv3d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_bn = nn.BatchNorm3d(squeeze_planes, eps=0.001, momentum=0.01)
self.expand1x1 = nn.Conv3d(squeeze_planes, expand1x1_planes,
kernel_size=1)
self.expand1x1_bn = nn.BatchNorm3d(expand1x1_planes, eps=0.001, momentum=0.01)
self.expand3x3 = nn.Conv3d(squeeze_planes, expand3x3_planes,
kernel_size=3, padding=1)
self.expand3x3_bn = nn.BatchNorm3d(expand3x3_planes, eps=0.001, momentum=0.01)
def forward(self, x):
out = self.squeeze(x)
out = self.squeeze_bn(out)
out = self.relu(out)
out1 = self.expand1x1(out)
out1 = self.expand1x1_bn(out1)
out2 = self.expand3x3(out)
out2 = self.expand3x3_bn(out2)
out = torch.cat([out1, out2], 1)
if self.use_bypass:
out += x
out = self.relu(out)
return out
# SqueezeNet3D or ShiftNet3D (SqueezeNet3D + Shift3D)
class SqueezeNet3D(nn.Module):
def __init__(self, shift3d=True, shift_chance=0.25, batch_shift=False, decay_iterations = 0, squeezec = 32, input_channel=1,
sample_size = WIDTH, sample_depth = DEPTH,num_classes=2, use_classifier=True):
super(SqueezeNet3D, self).__init__()
self.num_classes = num_classes
self.use_classifier = use_classifier
last_duration = int(math.ceil(sample_depth / 32))
last_size = int(math.ceil(sample_size / 32))
self.shift3d = shift3d
if shift3d:
self.shift3d_layer = Shift3DLayer(shift_chance=shift_chance, batch_shift=batch_shift, decay_iterations=decay_iterations)
self.convbn = nn.Sequential(
nn.Conv3d(input_channel, 64, kernel_size=3, stride=2, padding=(1,1,1)),
nn.BatchNorm3d(64, eps=0.001, momentum=0.01),
# make sure inplace for this relu is False,
# otherwise it may affects Shift3D operation in Pytorch version 1.2 or later
nn.ReLU(inplace=False)
)
self.features = nn.Sequential(
nn.MaxPool3d(kernel_size=3, stride=2, padding=1),
Fire(64, squeezec, 64, 64),
Fire(128, squeezec, 64, 64, use_bypass=True),
nn.MaxPool3d(kernel_size=3, stride=2, padding=1),
Fire(128, squeezec*2, 128, 128),
Fire(256, squeezec*2, 128, 128, use_bypass=True),
nn.MaxPool3d(kernel_size=3, stride=2, padding=1),
Fire(256, squeezec*3, 192, 192),
Fire(384, squeezec*3, 192, 192, use_bypass=True),
nn.MaxPool3d(kernel_size=3, stride=2, padding=1),
Fire(384, squeezec*4, 256, 256),
Fire(512, squeezec*4, 256, 256, use_bypass=True),
)
if use_classifier:
self.classifier = nn.Sequential(
nn.Dropout(p=0.3),
nn.Conv3d(512, self.num_classes, kernel_size=1),
nn.ReLU(inplace=True),
nn.AvgPool3d((last_duration, last_size, last_size), stride=1)
)
for m in self.modules():
if isinstance(m, nn.Conv3d):
m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
x = self.convbn(x)
if self.shift3d and self.training:
x = self.shift3d_layer(x)
x = self.features(x)
if self.use_classifier:
x = self.classifier(x)
return x.view(x.size(0), -1)
else:
return x