forked from fxcoudert/tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Cij.py
executable file
·95 lines (76 loc) · 2.61 KB
/
Cij.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python
import math, sys
import numpy as np
# Input file name
file = sys.argv[1]
# Temperature of the trajectory
temperature = 300
# Read h matrix trajectory
# Format is: ( a_x a_y a_z b_x b_y b_z c_x c_y c_z )
# First column in XST file is step number, it is ignored
h = np.loadtxt(file, usecols=range(1,10))
# Remove the first 20% of the simulation
h = h[len(h)/5:]
h = np.reshape(h, (-1,3,3))
# Unit cell averages
def vector_angle(v1, v2):
v1_u = v1 / np.linalg.norm(v1)
v2_u = v2 / np.linalg.norm(v2)
angle = np.arccos(np.dot(v1_u, v2_u))
if math.isnan(angle):
if np.dot(v1_u, v2_u) > 0:
return 0.0
else:
return np.pi
return angle
def h2abc(h):
return (np.linalg.norm(h[0]), np.linalg.norm(h[1]), np.linalg.norm(h[2]),
vector_angle(h[1],h[2]), vector_angle(h[2],h[0]), vector_angle(h[0],h[1]))
volume = np.mean(map(np.linalg.det, h))
abc = map(h2abc, h)
print 'Unit cell averages:'
print ' a = %.3f' % np.mean([x[0] for x in abc])
print ' b = %.3f' % np.mean([x[1] for x in abc])
print ' c = %.3f' % np.mean([x[2] for x in abc])
print ' alpha = %.3f' % np.rad2deg(np.mean([x[3] for x in abc]))
print ' beta = %.3f' % np.rad2deg(np.mean([x[4] for x in abc]))
print ' gamma = %.3f' % np.rad2deg(np.mean([x[5] for x in abc]))
print ' volume = %.1f' % volume
# Calculating the strain matrices
inv_reference = np.linalg.inv(h[0])
inv_reference_t = h0m1.transpose()
def h2eps(h):
return (np.dot(inv_reference_t, np.dot(h.transpose(), np.dot(h, inv_reference))) - np.identity(3)) / 2
epsilons = map(h2eps, h)
# Elastic constants
factor = (volume * 1.e-30) / (1.3806488e-23 * temperature)
CARTESIAN_TO_VOIGT = ((0, 0), (1, 1), (2, 2), (2, 1), (2, 0), (1, 0))
VOIGT_FACTORS = (1, 1, 1, 2, 2, 2)
Smat = np.zeros((6,6))
for i in range(6):
a, b = CARTESIAN_TO_VOIGT[i]
fi = np.mean([ epsilon[a, b] for epsilon in epsilons ])
for j in range(i+1):
u, v = CARTESIAN_TO_VOIGT[j]
fj = np.mean([ epsilon[u, v] for epsilon in epsilons ])
fij = np.mean([ epsilon[a, b] * epsilon[u, v] for epsilon in epsilons ])
Smat[i,j] = VOIGT_FACTORS[i] * VOIGT_FACTORS[j] * factor * (fij - fi * fj)
for i in range(5):
for j in range(i+1,6):
Smat[i][j] = Smat[j][i]
# And now the stiffness matrix (in GPa)
Cmat = np.linalg.inv(Smat) / 1.e9
print ''
print 'Stiffness matrix C (GPa):'
for i in range(6):
print ' ' ,
for j in range(6):
if j >= i:
print ('% 8.2f' % Cmat[i,j]) ,
else:
print ' ' ,
print ''
# Eigenvalues
print ''
print 'Stiffness matrix eigenvalues (GPa):'
print (6*'% 8.2f') % tuple(np.sort(np.linalg.eigvals(Cmat)))