-
Notifications
You must be signed in to change notification settings - Fork 0
/
peak.py
226 lines (180 loc) · 6.23 KB
/
peak.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""Peak detection algorithms."""
import warnings
import numpy as np
from scipy import optimize
from scipy.integrate import simps
eps = np.finfo(float).eps
def indexes(y, thres=0.3, min_dist=1):
"""Peak detection routine.
Finds the numeric index of the peaks in *y* by taking its first order difference. By using
*thres* and *min_dist* parameters, it is possible to reduce the number of
detected peaks. *y* must be signed.
Parameters
----------
y : ndarray (signed)
1D amplitude data to search for peaks.
thres : float between [0., 1.]
Normalized threshold. Only the peaks with amplitude higher than the
threshold will be detected.
min_dist : int
Minimum distance between each detected peak. The peak with the highest
amplitude is preferred to satisfy this constraint.
Returns
-------
ndarray
Array containing the numeric indexes of the peaks that were detected
"""
if isinstance(y, np.ndarray) and np.issubdtype(y.dtype, np.unsignedinteger):
raise ValueError("y must be signed")
thres = thres * (np.max(y) - np.min(y)) + np.min(y)
min_dist = int(min_dist)
# compute first order difference
dy = np.diff(y)
# propagate left and right values successively to fill all plateau pixels (0-value)
zeros,=np.where(dy == 0)
# check if the singal is totally flat
if len(zeros) == len(y) - 1:
return np.array([])
while len(zeros):
# add pixels 2 by 2 to propagate left and right value onto the zero-value pixel
zerosr = np.hstack([dy[1:], 0.])
zerosl = np.hstack([0., dy[:-1]])
# replace 0 with right value if non zero
dy[zeros]=zerosr[zeros]
zeros,=np.where(dy == 0)
# replace 0 with left value if non zero
dy[zeros]=zerosl[zeros]
zeros,=np.where(dy == 0)
# find the peaks by using the first order difference
peaks = np.where((np.hstack([dy, 0.]) < 0.)
& (np.hstack([0., dy]) > 0.)
& (y > thres))[0]
# handle multiple peaks, respecting the minimum distance
if peaks.size > 1 and min_dist > 1:
highest = peaks[np.argsort(y[peaks])][::-1]
rem = np.ones(y.size, dtype=bool)
rem[peaks] = False
for peak in highest:
if not rem[peak]:
sl = slice(max(0, peak - min_dist), peak + min_dist + 1)
rem[sl] = True
rem[peak] = False
peaks = np.arange(y.size)[~rem]
return peaks
def centroid(x, y):
"""Computes the centroid for the specified data.
Refer to centroid2 for a more complete, albeit slower version.
Parameters
----------
x : ndarray
Data on the x axis.
y : ndarray
Data on the y axis.
Returns
-------
float
Centroid of the data.
"""
return np.sum(x * y) / np.sum(y)
def centroid2(y, x=None, dx=1.):
"""Computes the centroid for the specified data.
Not intended to be used
Parameters
----------
y : array_like
Array whose centroid is to be calculated.
x : array_like, optional
The points at which y is sampled.
Returns
-------
(centroid, sd)
Centroid and standard deviation of the data.
"""
yt = np.array(y)
if x is None:
x = np.arange(yt.size, dtype='float') * dx
normaliser = simps(yt, x)
centroid = simps(x * yt, x) / normaliser
var = simps((x - centroid) ** 2 * yt, x) / normaliser
return centroid, np.sqrt(var)
def gaussian(x, ampl, center, dev):
"""Computes the Gaussian function.
Parameters
----------
x : number
Point to evaluate the Gaussian for.
a : number
Amplitude.
b : number
Center.
c : number
Width.
Returns
-------
float
Value of the specified Gaussian at *x*
"""
return ampl * np.exp(-(x - float(center)) ** 2 / (2.0 * dev ** 2 + eps))
def gaussian_fit(x, y, center_only=True):
"""Performs a Gaussian fitting of the specified data.
Parameters
----------
x : ndarray
Data on the x axis.
y : ndarray
Data on the y axis.
center_only: bool
If True, returns only the center of the Gaussian for `interpolate` compatibility
Returns
-------
ndarray or float
If center_only is `False`, returns the parameters of the Gaussian that fits the specified data
If center_only is `True`, returns the center position of the Gaussian
"""
if len(x) < 3:
# used RuntimeError to match errors raised in scipy.optimize
raise RuntimeError("At least 3 points required for Gaussian fitting")
initial = [np.max(y), x[0], (x[1] - x[0]) * 5]
params, pcov = optimize.curve_fit(gaussian, x, y, initial)
if center_only:
return params[1]
else:
return params
def interpolate(x, y, ind=None, width=10, func=gaussian_fit):
"""Tries to enhance the resolution of the peak detection by using
Gaussian fitting, centroid computation or an arbitrary function on the
neighborhood of each previously detected peak index.
RuntimeErrors raised in the fitting function will be converted to warnings, with the peak
being mantained as the original one (in the ind array).
Parameters
----------
x : ndarray
Data on the x dimension.
y : ndarray
Data on the y dimension.
ind : ndarray
Indexes of the previously detected peaks. If None, indexes() will be
called with the default parameters.
width : int
Number of points (before and after) each peak index to pass to *func*
in order to increase the resolution in *x*.
func : function(x,y)
Function that will be called to detect an unique peak in the x,y data.
Returns
-------
ndarray :
Array with the adjusted peak positions (in *x*)
"""
assert x.shape == y.shape
if ind is None:
ind = indexes(y)
out = []
for i in ind:
slice_ = slice(i - width, i + width + 1)
try:
best_idx = func(x[slice_], y[slice_])
except RuntimeError as e:
warnings.warn(str(e))
best_idx = i
out.append(best_idx)
return np.array(out)