-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstargan2_solver_v1.py
960 lines (807 loc) · 42.1 KB
/
stargan2_solver_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
import torchvision
from torch import autograd
from torch.utils.tensorboard import SummaryWriter
from model import Generator, Mapping, StyleEncoder, init_weights
from model import Discriminator
from torch.autograd import Variable
from torchvision.utils import save_image
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import time
import datetime
writer = SummaryWriter('/data/datasets/starganv2/runs/')
class Solver(object):
"""
Solver for training and testing StarGAN.
"""
def __init__(self, celeba_loader, rafd_loader, config):
"""Initialize configurations."""
# Data loader.
self.celeba_loader = celeba_loader
self.rafd_loader = rafd_loader
# Model configurations.
self.c_dim = config.c_dim
self.c2_dim = config.c2_dim
self.image_size = config.image_size
self.g_conv_dim = config.g_conv_dim
self.d_conv_dim = config.d_conv_dim
self.g_repeat_num = config.g_repeat_num
self.d_repeat_num = config.d_repeat_num
self.lambda_cls = config.lambda_cls
self.lambda_rec = config.lambda_rec
self.lambda_gp = config.lambda_gp
# self.lambda_sty = config.lambda_rec
self.lambda_sty = 1
self.lambda_ds = 1
self.lambda_cyc = 1
# Training configurations.
self.dataset = config.dataset
self.batch_size = config.batch_size
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.e_lr = config.e_lr
self.f_lr = config.f_lr
self.n_critic = config.n_critic
self.beta1 = config.beta1
self.beta2 = config.beta2
self.resume_iters = config.resume_iters
self.selected_attrs = config.selected_attrs
self.reg_param = 1
# Test configurations.
self.test_iters = config.test_iters
# Miscellaneous.
self.use_tensorboard = config.use_tensorboard
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Directories.
self.log_dir = config.log_dir
self.sample_dir = config.sample_dir
self.model_save_dir = config.model_save_dir
self.result_dir = config.result_dir
# Step size.
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.lr_update_step = config.lr_update_step
# Build the model and tensorboard.
self.build_model()
# if self.use_tensorboard:
# self.build_tensorboard()
def ones_target(self, size, device="cuda"):
"""Tensor containing ones, with shape = size"""
# data = Variable(torch.ones(size, 1))
if device == "cuda":
data = torch.ones((size, 1)).to(device)
else:
data = torch.ones((size, 1))
return data
def zeros_target(self, size, device="cuda"):
"""
Tensor containing zeros, with shape = size
"""
# data = Variable(torch.zeros(size, 1))
if device == "cuda":
data = torch.zeros((size, 1)).to(device)
else:
data = torch.zeros((size, 1))
return data
def build_model(self):
"""Create a generator and a discriminator."""
if self.dataset in ['CelebA', 'RaFD']:
# self.G = Generator(self.g_conv_dim, self.c_dim, self.g_repeat_num)
self.G = Generator(self.g_conv_dim)
# self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num)
self.D = Discriminator(repeat_num=5, channel_multiplier=32, dimension=1)
self.F = Mapping(image_size=128, repeat_num=6)
self.E = StyleEncoder(repeat_num=5, channel_multiplier=16, dimension=64)
# # initialize the weights of all modules using he init and set all biases to 0
# self.G.apply(init_weights)
# self.D.apply(init_weights)
# self.E.apply(init_weights)
# self.F.apply(init_weights)
elif self.dataset in ['Both']:
self.G = Generator(self.g_conv_dim, self.c_dim + self.c2_dim + 2, self.g_repeat_num) # 2 for mask vector.
self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim + self.c2_dim, self.d_repeat_num)
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
# self.d_optimizer = torch.optim.SGD(self.D.parameters(), lr=0.0001, momentum=0.9)
self.e_optimizer = torch.optim.Adam(self.E.parameters(), self.e_lr, [self.beta1, self.beta2])
self.f_optimizer = torch.optim.Adam(self.F.parameters(), self.f_lr, [self.beta1, self.beta2])
self.l1_loss = nn.L1Loss()
self.bce_loss = nn.BCEWithLogitsLoss()
# self.ce_loss = nn.CrossEntropyLoss()
self.print_network(self.G, 'G')
self.print_network(self.D, 'D')
self.print_network(self.E, 'E')
self.print_network(self.F, 'F')
self.G.to(self.device)
self.D.to(self.device)
self.E.to(self.device)
self.F.to(self.device)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iters))
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
def build_tensorboard(self):
"""Build a tensorboard logger."""
from logger import Logger
self.logger = Logger(self.log_dir)
def update_lr(self, g_lr, d_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def noise(self, size, dimension, device="cuda"):
"""
Generates a 1-d vector of gaussian sampled random values
"""
# n = Variable(torch.randn(size, 100))
# n = torch.randn((size, 100), requires_grad=True).to(device)
if device == "cuda":
n = torch.randn((size, dimension), requires_grad=True)
else:
n = torch.randn((size, dimension), requires_grad=True).to(device)
return n
def compute_grad2(self, d_out, x_in):
"""
https://github.com/LMescheder/GAN_stability/blob/master/gan_training/train.py
:param d_out: discriminator output
:param x_in: x_real or x_fake
:return:
"""
batch_size = x_in.size(0)
grad_dout = autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert (grad_dout2.size() == x_in.size())
reg = grad_dout2.view(batch_size, -1).sum(1)
return reg
def train_discriminator(self, x_real, label_org, s_tilde_trg, label_trg):
"""
train discriminator
@:param is_d is d or g
:return:
"""
self.d_optimizer.zero_grad()
x_real.requires_grad = True
# compute adversarial loss on real images
# with torch.no_grad():
out_real = torch.gather(self.D(x_real, num_domains=2), 1, label_org.long())
loss_real = self.bce_loss(out_real, self.ones_target(self.batch_size))
# loss_real.backward()
# R1 regularization only on real data
# out_real.requires_grad = True
# loss_real.backward(retain_graph=True)
reg = self.reg_param * self.compute_grad2(out_real, x_real).mean()
# reg.backward()
# target style code s_tilde
# Compute adversarial loss on fake images.
# x_fake = self.G(x_real, s_tilde[0])
x_fake = self.G(x_real, s_tilde_trg)
x_fake.detach()
d = self.D(x_fake)
out_fake = torch.gather(d, 1, label_trg.long())
# d_loss_fake = torch.mean(out_fake)
loss_fake = self.bce_loss(out_fake, self.zeros_target(self.batch_size))
# loss_fake.backward()
# self.d_optimizer.step()
# Backward and optimize.
# d_loss = loss_real + loss_fake
d_loss = loss_real + loss_fake + reg
d_loss.backward()
self.d_optimizer.step()
# l1_norm = torch.norm(self.D.weight, p=1)
# d_loss += l1_norm
return d_loss, loss_real, loss_fake
def train_generator(self, x_real, label_org, label_trg):
"""
train generator
:param x_real:
:param label_org:
:param label_trg:
:return:
"""
# clear cached gradients for optimizer
self.g_optimizer.zero_grad()
self.e_optimizer.zero_grad()
self.f_optimizer.zero_grad()
# style reconstruction
g_s_tilde_trg = self.generate_style_code(label_trg)
# g_x_fake = self.G(x_real, g_s_tilde_trg)
# s_hat = self.E(d_x_fake)
# s_hat: estimated style code of source image
# loss style reconstruction:style reconstruction
s_hat_sty = self.E(self.G(x_real, g_s_tilde_trg), num_domains=2)
s_hat_trg = torch.index_select(torch.stack(s_hat_sty, 1), 1, label_trg.squeeze().long())[:, 0, :]
g_loss_sty = self.l1_loss(g_s_tilde_trg, s_hat_trg)
# loss cycle: preserving source characteristics
s_hat_cyc = self.E(x_real, num_domains=2)
s_hat_org = torch.index_select(torch.stack(s_hat_cyc, 1), 1, label_org.squeeze().long())[:, 0, :]
x_fake_cyc = self.G(self.G(x_real, g_s_tilde_trg), s_hat_org)
g_loss_cyc = self.l1_loss(x_real, x_fake_cyc)
# loss style diversification:style diversification
# z1 = self.noise(size=self.batch_size, dimension=16)
# s1_tilde = self.F(z1, num_domains=2)
# s1_tilde_trg = torch.index_select(torch.stack(s1_tilde, 1), 1, label_trg.squeeze().long())[:, 0, :]
s1_tilde_trg = self.generate_style_code(label_trg)
# z2 = self.noise(size=self.batch_size, dimension=16)
# s2_tilde = self.F(z2, num_domains=2)
# s2_tilde_trg = torch.index_select(torch.stack(s2_tilde, 1), 1, label_trg.squeeze().long())[:, 0, :]
s2_tilde_trg = self.generate_style_code(label_trg)
g_loss_ds = self.l1_loss(self.G(x_real, s1_tilde_trg), self.G(x_real, s2_tilde_trg))
#
# out_real = torch.gather(self.D(x_real, num_domains=2), 1, label_org.long())
# loss_real = self.bce_loss(self.ones_target(self.batch_size), out_real)
# target style code s_tilde
# Compute loss with fake images.
# x_fake = self.G(x_real, s_tilde[0])
# compute adversarial loss on fake images
x_fake = self.G(x_real, g_s_tilde_trg)
d = self.D(x_fake)
out_fake = torch.gather(d, 1, label_trg.long())
# d_loss_fake = torch.mean(out_fake)
g_adv_loss = self.bce_loss(out_fake, self.ones_target(self.batch_size))
g_loss = g_adv_loss + self.lambda_sty * g_loss_sty + self.lambda_cyc * g_loss_cyc - self.lambda_ds * g_loss_ds
# g_loss = g_adv_loss
g_loss.backward()
self.g_optimizer.step()
self.e_optimizer.step()
self.f_optimizer.step()
return g_loss, g_adv_loss, g_loss_sty, g_loss_cyc, g_loss_ds
# return g_loss
def compute_adversarial_loss(self, is_d, x_real, label_org, s_tilde_trg, label_trg):
"""
compute non-saturating adversarial loss
@:param is_d is d or g
:return:
"""
out_real = torch.gather(self.D(x_real, num_domains=2), 1, label_org.long())
loss_real = self.bce_loss(self.ones_target(self.batch_size), out_real)
# target style code s_tilde
# Compute loss with fake images.
# x_fake = self.G(x_real, s_tilde[0])
x_fake = self.G(x_real, s_tilde_trg)
if is_d:
# d = self.D(x_fake).detach()
x_fake.detach()
d = self.D(x_fake)
out_fake = torch.gather(d, 1, label_trg.long())
# d_loss_fake = torch.mean(out_fake)
loss_fake = self.bce_loss(self.zeros_target(self.batch_size), out_fake)
# Backward and optimize.
d_loss = loss_real + loss_fake
# # R1 regularization
# l1_norm = torch.norm(self.D.weight, p=1)
# d_loss += l1_norm
return d_loss, loss_real, loss_fake
def reset_grad(self):
"""
Reset the gradient buffers.
"""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
self.e_optimizer.zero_grad()
self.f_optimizer.zero_grad()
def denorm(self, x):
"""
Convert the range from [-1, 1] to [0, 1].
"""
out = (x + 1) / 2
return out.clamp_(0, 1)
def gradient_penalty(self, y, x):
"""
Compute gradient penalty: (L2_norm(dy/dx) - 1)**2.
"""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx ** 2, dim=1))
return torch.mean((dydx_l2norm - 1) ** 2)
def label2onehot(self, labels, dim):
"""
Convert label indices to one-hot vectors.
"""
batch_size = labels.size(0)
out = torch.zeros(batch_size, dim)
out[np.arange(batch_size), labels.long()] = 1
return out
def create_labels(self, c_org, c_dim=5, dataset='CelebA', selected_attrs=None):
"""
Generate target domain labels for debugging and testing.
"""
# Get hair color indices.
if dataset == 'CelebA':
hair_color_indices = []
for i, attr_name in enumerate(selected_attrs):
if attr_name in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair']:
hair_color_indices.append(i)
c_trg_list = []
for i in range(c_dim):
if dataset == 'CelebA':
c_trg = c_org.clone()
if i in hair_color_indices: # Set one hair color to 1 and the rest to 0.
c_trg[:, i] = 1
for j in hair_color_indices:
if j != i:
c_trg[:, j] = 0
else:
c_trg[:, i] = (c_trg[:, i] == 0) # Reverse attribute value.
elif dataset == 'RaFD':
c_trg = self.label2onehot(torch.ones(c_org.size(0)) * i, c_dim)
c_trg_list.append(c_trg.to(self.device))
return c_trg_list
def generate_style_code(self, label_trg):
"""
:param label_trg:
:return:
"""
z = self.noise(size=self.batch_size, dimension=16, device=self.device)
s_tilde = self.F(z, num_domains=2)
# Compute loss with fake images.
s_tilde_trg = torch.index_select(torch.stack(s_tilde, 1), 1, label_trg.squeeze().long())[:, 0, :]
return s_tilde_trg
def classification_loss(self, logit, target, dataset='CelebA'):
"""
Compute binary or softmax cross entropy loss.
"""
if dataset == 'CelebA':
return F.binary_cross_entropy_with_logits(logit, target, size_average=False) / logit.size(0)
elif dataset == 'RaFD':
return F.cross_entropy(logit, target)
def train(self):
"""
Train StarGAN within a single dataset.
"""
# Set data loader.
if self.dataset == 'CelebA':
data_loader = self.celeba_loader
elif self.dataset == 'RaFD':
data_loader = self.rafd_loader
# Fetch fixed inputs for debugging.
data_iter = iter(data_loader)
x_fixed, c_org = next(data_iter)
x_fixed = x_fixed.to(self.device)
# c_fixed_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs)
# Learning rate cache for decaying.
# g_lr = self.g_lr
# d_lr = self.d_lr
# Start training from scratch or resume training.
start_iters = 0
if self.resume_iters:
start_iters = self.resume_iters
self.restore_model(self.resume_iters)
# Start training.
print('Start training...')
start_time = time.time()
for i in range(start_iters, self.num_iters):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch real images and labels.
try:
x_real, label_org = next(data_iter)
except:
data_iter = iter(data_loader)
x_real, label_org = next(data_iter)
# Generate target domain labels randomly.
rand_idx = torch.randperm(label_org.size(0))
label_trg = label_org[rand_idx]
# if self.dataset == 'CelebA':
# c_org = label_org.clone()
# c_trg = label_trg.clone()
# elif self.dataset == 'RaFD':
# c_org = self.label2onehot(label_org, self.c_dim)
# c_trg = self.label2onehot(label_trg, self.c_dim)
x_real = x_real.to(self.device) # Input images.
# c_org = c_org.to(self.device) # Original domain labels.
# c_trg = c_trg.to(self.device) # Target domain labels.
label_org = label_org.to(self.device) # Labels for computing classification loss.
label_trg = label_trg.to(self.device) # Labels for computing classification loss.
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# self.d_optimizer.zero_grad()
# Compute loss with real images.
# out_src, out_cls = self.D(x_real)
out_real = self.D(x_real, num_domains=2)
# d_out_real = torch.gather(out_real, 1, label_org.long())
# d_loss_real = torch.mean(torch.log(d_out_src))
# d_loss_real = self.bce_loss(self.zeros_target(self.batch_size), d_out_real)
# d_loss_cls = self.classification_loss(out_cls, label_org, self.dataset)
# z:latent code s_tilde:target style code
z = self.noise(size=self.batch_size, dimension=16, device=self.device)
s_tilde = self.F(z, num_domains=2)
# target style code s_tilde
# Compute loss with fake images.
# s_tilde_tensor = torch.stack(s_tilde, 1)
s_tilde_trg = torch.index_select(torch.stack(s_tilde, 1), 1, label_trg.squeeze().long())[:, 0, :]
# s_tilde_trg = torch.gather(s_tilde_tensor, 1, label_trg.expand(s_tilde_tensor.size()).long())
# s_tilde_trg = torch.gather(torch.stack(s_tilde, 1), 1, torch.unsqueeze(label_trg, 2).long())
d_x_fake = self.G(x_real, s_tilde_trg)
# out_fake = self.D(d_x_fake.detach())
# d_out_fake = torch.gather(out_fake, 1, label_trg.long())
# # d_loss_fake = torch.mean(out_fake)
# d_loss_fake = self.bce_loss(self.ones_target(self.batch_size), d_out_fake)
# # Compute loss for gradient penalty.
# alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device)
# x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True)
# out_src, _ = self.D(x_hat)
# d_loss_gp = self.gradient_penalty(out_src, x_hat)
# # Backward and optimize.
# d_loss = -(d_loss_real + d_loss_fake)
#
# # R1 regularization
# l1_norm = torch.norm(self.D.weight, p=1)
# d_loss += l1_norm
# d_loss, d_loss_real, d_loss_fake = self.compute_adversarial_loss(True, x_real, label_org, d_x_fake, label_trg)
d_loss, d_loss_real, d_loss_fake = self.train_discriminator(x_real, label_org, s_tilde_trg, label_trg)
# d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp
# d_loss = -d_loss
# self.reset_grad()
# d_loss.backward()
# self.d_optimizer.step()
# Logging.
loss = {
'D/loss': d_loss.item(),
'D/loss_real': d_loss_real.item(),
'D/loss_fake': d_loss_fake.item()
}
writer.add_scalar('D/loss', d_loss.item(), i)
writer.add_scalar('D/loss_real', d_loss_real.item(), i)
writer.add_scalar('D/loss_fake', d_loss_fake.item(), i)
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i + 1) % self.n_critic == 0:
# # style reconstruction
# g_s_tilde_trg = self.generate_style_code(label_trg)
# # g_x_fake = self.G(x_real, g_s_tilde_trg)
# # s_hat = self.E(d_x_fake)
#
# # s_hat: estimated style code of source image
# # loss style reconstruction:style reconstruction
# s_hat = self.E(self.G(x_real, g_s_tilde_trg), num_domains=2)
# s_hat_trg = torch.index_select(torch.stack(s_hat, 1), 1, label_trg.squeeze().long())[:, 0, :]
# g_loss_sty = self.l1_loss(g_s_tilde_trg, s_hat_trg)
#
# # loss cycle: preserving source characteristics
# s_hat_org = torch.index_select(torch.stack(s_hat, 1), 1, label_org.squeeze().long())[:, 0, :]
# x_fake_cyc = self.G(self.G(x_real, g_s_tilde_trg), s_hat_org)
# g_loss_cyc = self.l1_loss(x_real, x_fake_cyc)
#
# # loss style diversification:style diversification
# # z1 = self.noise(size=self.batch_size, dimension=16)
# # s1_tilde = self.F(z1, num_domains=2)
# # s1_tilde_trg = torch.index_select(torch.stack(s1_tilde, 1), 1, label_trg.squeeze().long())[:, 0, :]
# s1_tilde_trg = self.generate_style_code(label_trg)
# # z2 = self.noise(size=self.batch_size, dimension=16)
# # s2_tilde = self.F(z2, num_domains=2)
# # s2_tilde_trg = torch.index_select(torch.stack(s2_tilde, 1), 1, label_trg.squeeze().long())[:, 0, :]
# s2_tilde_trg = self.generate_style_code(label_trg)
# g_loss_ds = self.l1_loss(self.G(x_real, s1_tilde_trg), self.G(x_real, s2_tilde_trg))
# # Original-to-target domain.
# x_fake = self.G(x_real, c_trg)
# out_src, out_cls = self.D(x_fake)
# g_loss_fake = - torch.mean(out_src)
# g_loss_cls = self.classification_loss(out_cls, label_trg, self.dataset)
#
# # Target-to-original domain.
# x_reconst = self.G(x_fake, c_org)
# g_loss_rec = torch.mean(torch.abs(x_real - x_reconst))
# out_real = self.D(x_real, num_domains=2)
# g_out_real = torch.gather(out_real, 1, label_org.long())
# g_loss_real = self.bce_loss(self.zeros_target(self.batch_size), g_out_real)
# # target style code s_tilde
#
# # Compute loss with fake images.
# # x_fake = self.G(x_real, s_tilde[0])
# out_fake = self.D(g_x_fake)
# g_out_fake = torch.gather(out_fake, 1, label_org.long())
# # d_loss_fake = torch.mean(out_fake)
# g_loss_fake = self.bce_loss(self.ones_target(self.batch_size), g_out_fake)
g_loss, g_adv_loss, g_loss_sty, g_loss_cyc, g_loss_ds = self.train_generator(x_real, label_org, label_trg)
# g_loss = self.train_generator(x_real, label_org, label_trg)
# g_adv_loss = self.compute_adversarial_loss(False, x_real, label_org, g_s_tilde_trg, label_trg)[0]
# Backward and optimize.
# g_loss = g_adv_loss + self.lambda_sty * g_loss_sty + self.lambda_cyc * g_loss_cyc + self.lambda_ds * g_loss_ds
# self.reset_grad()
# g_loss.backward()
# self.g_optimizer.step()
# self.e_optimizer.step()
# self.f_optimizer.step()
# Logging.
# loss['G/loss_fake'] = g_loss_fake.item()
# loss['G/loss_sty'] = g_loss_sty.item()
# loss['G/loss_cyc'] = g_loss_cyc.item()
# loss['G/loss_ds'] = g_loss_ds.item()
loss['G/loss'] = g_loss.item()
loss['G/loss_adv'] = g_adv_loss.item()
loss['G/loss_sty'] = g_loss_sty.item()
loss['G/loss_cyc'] = g_loss_cyc.item()
loss['G/loss_ds'] = g_loss_ds.item()
# writer.add_scalar('G/loss_cyc', g_loss_cyc.item(), i)
# writer.add_scalar('G/loss_ds', g_loss_ds.item(), i)
writer.add_scalar('G/loss', g_loss.item(), i)
writer.add_scalar('G/loss_adv', g_adv_loss.item(), i)
writer.add_scalar('G/loss_sty', g_loss_sty.item(), i)
writer.add_scalar('G/loss_cyc', g_loss_cyc.item(), i)
writer.add_scalar('G/loss_ds', g_loss_ds.item(), i)
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i + 1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i + 1, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
# if self.use_tensorboard:
# for tag, value in loss.items():
# self.logger.scalar_summary(tag, value, i + 1)
# Translate fixed images for debugging.
if (i + 1) % self.sample_step == 0:
with torch.no_grad():
# source images + generated images
g_s_tilde_trg = self.generate_style_code(label_trg)
x_fake_list = [x_fixed, self.G(x_fixed, g_s_tilde_trg)]
# for c_fixed in label_org:
x_concat = torch.cat(x_fake_list, dim=3)
sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i + 1))
save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(sample_path))
grid = torchvision.utils.make_grid(x_concat)
writer.add_image('images', grid, 0)
# writer.add_graph(model, images)
# Save model checkpoints.
if (i + 1) % self.model_save_step == 0:
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i + 1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i + 1))
E_path = os.path.join(self.model_save_dir, '{}-E.ckpt'.format(i + 1))
F_path = os.path.join(self.model_save_dir, '{}-F.ckpt'.format(i + 1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
torch.save(self.E.state_dict(), E_path)
torch.save(self.F.state_dict(), F_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
#
# # Decay learning rates.
# if (i + 1) % self.lr_update_step == 0 and (i + 1) > (self.num_iters - self.num_iters_decay):
# g_lr -= (self.g_lr / float(self.num_iters_decay))
# d_lr -= (self.d_lr / float(self.num_iters_decay))
# self.update_lr(g_lr, d_lr)
# print('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
# Decay weight lambda ds
if (i + 1) < self.num_iters_decay:
self.lambda_ds = 1 - 0.00002 * (i + 1)
# print('Decayed weight lambda ds , lambda_ds: {}'.format(self.lambda_ds))
# close the tensorboard summary writter
writer.close()
def train_multi(self):
"""Train StarGAN with multiple datasets."""
# Data iterators.
celeba_iter = iter(self.celeba_loader)
rafd_iter = iter(self.rafd_loader)
# Fetch fixed inputs for debugging.
x_fixed, c_org = next(celeba_iter)
x_fixed = x_fixed.to(self.device)
c_celeba_list = self.create_labels(c_org, self.c_dim, 'CelebA', self.selected_attrs)
c_rafd_list = self.create_labels(c_org, self.c2_dim, 'RaFD')
zero_celeba = torch.zeros(x_fixed.size(0), self.c_dim).to(self.device) # Zero vector for CelebA.
zero_rafd = torch.zeros(x_fixed.size(0), self.c2_dim).to(self.device) # Zero vector for RaFD.
mask_celeba = self.label2onehot(torch.zeros(x_fixed.size(0)), 2).to(self.device) # Mask vector: [1, 0].
mask_rafd = self.label2onehot(torch.ones(x_fixed.size(0)), 2).to(self.device) # Mask vector: [0, 1].
# Learning rate cache for decaying.
g_lr = self.g_lr
d_lr = self.d_lr
# Start training from scratch or resume training.
start_iters = 0
if self.resume_iters:
start_iters = self.resume_iters
self.restore_model(self.resume_iters)
# Start training.
print('Start training...')
start_time = time.time()
for i in range(start_iters, self.num_iters):
for dataset in ['CelebA', 'RaFD']:
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch real images and labels.
data_iter = celeba_iter if dataset == 'CelebA' else rafd_iter
try:
x_real, label_org = next(data_iter)
except:
if dataset == 'CelebA':
celeba_iter = iter(self.celeba_loader)
x_real, label_org = next(celeba_iter)
elif dataset == 'RaFD':
rafd_iter = iter(self.rafd_loader)
x_real, label_org = next(rafd_iter)
# Generate target domain labels randomly.
rand_idx = torch.randperm(label_org.size(0))
label_trg = label_org[rand_idx]
if dataset == 'CelebA':
c_org = label_org.clone()
c_trg = label_trg.clone()
zero = torch.zeros(x_real.size(0), self.c2_dim)
mask = self.label2onehot(torch.zeros(x_real.size(0)), 2)
c_org = torch.cat([c_org, zero, mask], dim=1)
c_trg = torch.cat([c_trg, zero, mask], dim=1)
elif dataset == 'RaFD':
c_org = self.label2onehot(label_org, self.c2_dim)
c_trg = self.label2onehot(label_trg, self.c2_dim)
zero = torch.zeros(x_real.size(0), self.c_dim)
mask = self.label2onehot(torch.ones(x_real.size(0)), 2)
c_org = torch.cat([zero, c_org, mask], dim=1)
c_trg = torch.cat([zero, c_trg, mask], dim=1)
x_real = x_real.to(self.device) # Input images.
c_org = c_org.to(self.device) # Original domain labels.
c_trg = c_trg.to(self.device) # Target domain labels.
label_org = label_org.to(self.device) # Labels for computing classification loss.
label_trg = label_trg.to(self.device) # Labels for computing classification loss.
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# Compute loss with real images.
out_src, out_cls = self.D(x_real)
out_cls = out_cls[:, :self.c_dim] if dataset == 'CelebA' else out_cls[:, self.c_dim:]
d_loss_real = - torch.mean(out_src)
d_loss_cls = self.classification_loss(out_cls, label_org, dataset)
# Compute loss with fake images.
x_fake = self.G(x_real, c_trg)
out_src, _ = self.D(x_fake.detach())
d_loss_fake = torch.mean(out_src)
# Compute loss for gradient penalty.
alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device)
x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True)
out_src, _ = self.D(x_hat)
d_loss_gp = self.gradient_penalty(out_src, x_hat)
# Backward and optimize.
d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging.
loss = {}
loss['D/loss_real'] = d_loss_real.item()
loss['D/loss_fake'] = d_loss_fake.item()
loss['D/loss_cls'] = d_loss_cls.item()
loss['D/loss_gp'] = d_loss_gp.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i + 1) % self.n_critic == 0:
# Original-to-target domain.
x_fake = self.G(x_real, c_trg)
out_src, out_cls = self.D(x_fake)
out_cls = out_cls[:, :self.c_dim] if dataset == 'CelebA' else out_cls[:, self.c_dim:]
g_loss_fake = - torch.mean(out_src)
g_loss_cls = self.classification_loss(out_cls, label_trg, dataset)
# Target-to-original domain.
x_reconst = self.G(x_fake, c_org)
g_loss_rec = torch.mean(torch.abs(x_real - x_reconst))
# Backward and optimize.
g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_rec'] = g_loss_rec.item()
loss['G/loss_cls'] = g_loss_cls.item()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training info.
if (i + 1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}], Dataset [{}]".format(et, i + 1, self.num_iters, dataset)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, i + 1)
# Translate fixed images for debugging.
if (i + 1) % self.sample_step == 0:
with torch.no_grad():
x_fake_list = [x_fixed]
for c_fixed in c_celeba_list:
c_trg = torch.cat([c_fixed, zero_rafd, mask_celeba], dim=1)
x_fake_list.append(self.G(x_fixed, c_trg))
# for c_fixed in c_rafd_list:
# c_trg = torch.cat([zero_celeba, c_fixed, mask_rafd], dim=1)
# x_fake_list.append(self.G(x_fixed, c_trg))
x_concat = torch.cat(x_fake_list, dim=3)
sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i + 1))
save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(sample_path))
# Save model checkpoints.
if (i + 1) % self.model_save_step == 0:
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i + 1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i + 1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i + 1) % self.lr_update_step == 0 and (i + 1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
d_lr -= (self.d_lr / float(self.num_iters_decay))
self.update_lr(g_lr, d_lr)
print('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
def test(self):
"""Translate images using StarGAN trained on a single dataset."""
# Load the trained generator.
self.restore_model(self.test_iters)
# Set data loader.
if self.dataset == 'CelebA':
data_loader = self.celeba_loader
elif self.dataset == 'RaFD':
data_loader = self.rafd_loader
with torch.no_grad():
for i, (x_real, c_org) in enumerate(data_loader):
# Prepare input images and target domain labels.
x_real = x_real.to(self.device)
c_trg_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs)
# Translate images.
x_fake_list = [x_real]
for c_trg in c_trg_list:
x_fake_list.append(self.G(x_real, c_trg))
# Save the translated images.
x_concat = torch.cat(x_fake_list, dim=3)
result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i + 1))
save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(result_path))
def test_multi(self):
"""Translate images using StarGAN trained on multiple datasets."""
# Load the trained generator.
self.restore_model(self.test_iters)
with torch.no_grad():
for i, (x_real, c_org) in enumerate(self.celeba_loader):
# Prepare input images and target domain labels.
x_real = x_real.to(self.device)
c_celeba_list = self.create_labels(c_org, self.c_dim, 'CelebA', self.selected_attrs)
c_rafd_list = self.create_labels(c_org, self.c2_dim, 'RaFD')
zero_celeba = torch.zeros(x_real.size(0), self.c_dim).to(self.device) # Zero vector for CelebA.
zero_rafd = torch.zeros(x_real.size(0), self.c2_dim).to(self.device) # Zero vector for RaFD.
mask_celeba = self.label2onehot(torch.zeros(x_real.size(0)), 2).to(self.device) # Mask vector: [1, 0].
mask_rafd = self.label2onehot(torch.ones(x_real.size(0)), 2).to(self.device) # Mask vector: [0, 1].
# Translate images.
x_fake_list = [x_real]
for c_celeba in c_celeba_list:
c_trg = torch.cat([c_celeba, zero_rafd, mask_celeba], dim=1)
x_fake_list.append(self.G(x_real, c_trg))
for c_rafd in c_rafd_list:
c_trg = torch.cat([zero_celeba, c_rafd, mask_rafd], dim=1)
x_fake_list.append(self.G(x_real, c_trg))
# Save the translated images.
x_concat = torch.cat(x_fake_list, dim=3)
result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i + 1))
save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(result_path))