-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcw.py
78 lines (64 loc) · 2.12 KB
/
cw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from unibe import *
from make_filters import make_filter
from scipy.interpolate import interp1d
from comet import ref_rock
import matplotlib.colors
from scipy.integrate import quad
from camera import Camera
import scipy.constants as const
from SNR import snr
from scipy.optimize import minimize, fsolve, leastsq
from motion_blurr import get_possible_detector_time
def get_mirror():
df_mirror = pd.read_csv("data/mirrors_transmission.txt", delimiter="\s")
M = interp1d(df_mirror.wavelength, df_mirror.transmission, fill_value="extrapolate")
# percent
return M
def get_detector():
df_qe = pd.read_csv("data/qe.txt", delimiter=",")
Q = interp1d(df_qe.Wavelength, df_qe.QE / 100, fill_value="extrapolate")
# electrons per photons
return Q
def get_solar():
df_solar = pd.read_csv("data/solar.csv", delimiter=";", skiprows=1)
S = interp1d(df_solar["Wavelength (nm)"], df_solar["Extraterrestrial W*m-2*nm-1"], fill_value="extrapolate")
# W per meter squared per nanometer
return S
M = get_mirror()
Q = get_detector()
S = get_solar()
def integrand(w, alpha=0):
return w * M(w) * Q(w) * ref_rock(w, alpha) * S(w)
if __name__ == "__main__":
centers = np.arange(250, 1151, 50)
alpha = 11
signals = []
coca = Camera()
df = pd.read_csv("data/texp.csv")
t = interp1d(df.alpha, df["texp10"], fill_value="extrapolate")
t_exp = t(alpha) / (30 / 10) / 1000
t_exp = get_possible_detector_time(t_exp)
w = 100
for c in centers:
print(c)
i = quad(integrand, c - w / 2, c + w / 2, args=(alpha))[
0]
signal = coca.A_Omega / coca.G * t_exp * i / (
const.h * const.c * coca.r_h ** 2) * 1e-9
signals.append(signal)
signals = np.array(signals)
plt.plot(centers, signals, BLACK, label="w=100nm")
plt.ylabel("signals [DN]")
plt.xlabel("centers")
d = {
"centers": centers,
"signal": signals
}
df = pd.DataFrame(data=d)
df.to_csv("data/cw.csv", index=False)
plt.legend()
plt.savefig("plots/cw.png")
plt.show()