forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.py
346 lines (303 loc) · 12.6 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import tensorrt as trt
from .._common import default_net
from ..functional import (ACT2FN, AllReduceFusionParams, cast, concat,
gemm_swiglu)
from ..module import Module
from ..quantization import QuantMode
from ..quantization.functional import quantize
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, RowLinear
from .lora import LoraRuntimeParams
from .normalization import LayerNorm
class MLP(Module):
def __init__(
self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
inner_layernorm=False,
eps=1e-05,
):
super().__init__()
if hidden_act not in ACT2FN:
raise ValueError(
'unsupported activation function: {}'.format(hidden_act))
fc_output_size = 2 * ffn_hidden_size if hidden_act in [
'swiglu', 'gegelu'
] else ffn_hidden_size
self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype,
eps=eps) if inner_layernorm else None
self.fc = ColumnLinear(hidden_size,
fc_output_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.proj = RowLinear(ffn_hidden_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.hidden_act = hidden_act
self.dtype = dtype
self.bias = bias
self.tp_group = tp_group
self.tp_size = tp_size
self.quant_mode = quant_mode
self.eps = eps
def forward(self, hidden_states, lora_layer_params=None, gegelu_limit=None):
mlp_fc_lora_params = None
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
inter = self.fc(hidden_states, mlp_fc_lora_params)
if self.hidden_act == 'gegelu':
inter = ACT2FN[self.hidden_act](inter, gegelu_limit)
else:
inter = ACT2FN[self.hidden_act](inter)
if self.inner_layernorm is not None:
inter = self.inner_layernorm(inter)
output = self.proj(inter, lora_runtime_params=mlp_proj_lora_params)
return output
class GatedMLP(MLP):
def __init__(
self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
inner_layernorm=False,
eps=1e-05,
):
super().__init__(hidden_size,
ffn_hidden_size,
hidden_act,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=quant_mode,
inner_layernorm=inner_layernorm,
eps=eps)
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.tp_group = tp_group
self.tp_size = tp_size
self.gate = ColumnLinear(hidden_size,
ffn_hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
def forward(self,
hidden_states,
lora_layer_params=None,
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
mlp_fc_lora_params = None
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = None
if lora_layer_params is not None:
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
inter = self.fc(hidden_states, mlp_fc_lora_params)
inter = ACT2FN[self.hidden_act](inter)
gate = self.gate(hidden_states, mlp_gate_lora_params)
intermediate = inter * gate
if self.inner_layernorm is not None:
intermediate = self.inner_layernorm(intermediate)
output = self.proj(intermediate,
lora_runtime_params=mlp_proj_lora_params,
reduce_fusion_params=reduce_fusion_params)
return output
class FusedGatedMLP(Module):
def __init__(
self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
inner_layernorm=False,
eps=1e-05,
):
super().__init__()
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.hidden_act = hidden_act
self.bias = bias
self.dtype = dtype
self.tp_group = tp_group
self.tp_size = tp_size
self.quant_mode = quant_mode
self.fused_fc = ColumnLinear(
self.hidden_size,
self.ffn_hidden_size * 2,
bias=self.bias,
dtype=self.dtype,
tp_group=self.tp_group,
tp_size=self.tp_size,
gather_output=False,
)
self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype,
eps=eps) if inner_layernorm else None
self.proj = RowLinear(ffn_hidden_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
# see optimize_model's add_lora for LoRA initialization
self.lora = None
def fc_gate_plugin(self, hidden_states, lora_layer_params=None):
# Combine the following pattern
#
# SiLU(FC(x)) + Gate(x)
#
# into:
#
# SwiGLU(FusedFC(x))
p_dtype = default_net().plugin_config.gemm_swiglu_plugin
use_fp8 = p_dtype == 'fp8'
assert use_fp8, "gemm_swiglu_plugin only supports fp8 now"
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
if mlp_fc_lora_params is not None or mlp_gate_lora_params is not None:
raise NotImplementedError(
f"LoRA not yet implemented for gemm_swiglu_plugin")
if self.hidden_act != 'silu':
raise NotImplementedError(
f"Activation {self.hidden_act} not yet implemented for gemm_swiglu_plugin"
)
if self.bias:
raise NotImplementedError(
f"bias not yet implemented for gemm_swiglu_plugin fp8")
assert isinstance(
self.fused_fc,
FP8Linear), "fp8 gemm_swiglu only supports fp8 weights"
assert isinstance(
self.proj,
FP8RowLinear), "fp8 gemm_swiglu only supports fp8 weights"
assert self.fused_fc.weight.shape == (
self.hidden_size, self.ffn_hidden_size * 2 //
self.tp_size), "fp8 gemm_swiglu only supports (k, n) weights"
scale_d0 = (self.fused_fc.weights_scaling_factor.raw_value.item() *
self.fused_fc.activation_scaling_factor.raw_value.item())
scale_d1 = scale_d0
scale_output = 1.0 / self.proj.activation_scaling_factor.raw_value.item(
)
activation_scaling_factor = cast(
self.fused_fc.activation_scaling_factor.value, self.dtype)
if hidden_states.dtype != trt.fp8:
hidden_states = quantize(hidden_states, activation_scaling_factor,
'fp8')
inter = gemm_swiglu(hidden_states, self.fused_fc.weight.value, None,
scale_d0, scale_d1, scale_output)
return inter
def fc_gate(self, hidden_states, lora_layer_params=None):
# Combine the following pattern
#
# SiLU(FC(x)) + Gate(x)
#
# into:
#
# SwiGLU(FusedFC(x))
#
# Upside is we don't need to modify 4 different weight loading paths just to concat weights
inter = self.fused_fc(hidden_states)
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
if mlp_fc_lora_params is not None and mlp_gate_lora_params is not None:
mlp_in_lora_params = LoraRuntimeParams(
lora_ranks=[
mlp_fc_lora_params.lora_ranks[0],
mlp_gate_lora_params.lora_ranks[0]
],
lora_weights_pointers=[
mlp_fc_lora_params.lora_weights_pointers[0],
mlp_gate_lora_params.lora_weights_pointers[0]
],
host_request_types=mlp_fc_lora_params.host_request_types,
host_context_lengths=mlp_fc_lora_params.
host_context_lengths,
max_context_length=mlp_fc_lora_params.max_context_length)
mlp_fc_lora, mlp_gate_lora = self.lora(hidden_states,
mlp_in_lora_params)
mlp_in_result = concat([mlp_gate_lora, mlp_fc_lora],
dim=mlp_fc_lora.rank() - 1)
inter = inter + mlp_in_result
if self.hidden_act == 'silu':
inter = ACT2FN['swiglu'](inter)
elif self.hidden_act == 'gelu':
inter = ACT2FN['geglu'](inter)
else:
raise NotImplementedError(
f"Activation {self.hidden_act} not yet implemented for FusedGatedMLP"
)
return inter
def forward(self,
hidden_states,
lora_layer_params=None,
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
if default_net().plugin_config.gemm_swiglu_plugin:
assert self.dtype == 'float16', f"Currently limited support, got {self.dtype}"
inter = self.fc_gate_plugin(hidden_states, lora_layer_params)
else:
inter = self.fc_gate(hidden_states, lora_layer_params)
if self.inner_layernorm is not None:
inter = self.inner_layernorm(inter)
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
output = self.proj(inter,
lora_runtime_params=mlp_proj_lora_params,
reduce_fusion_params=reduce_fusion_params)
return output