diff --git a/README.rst b/README.rst
index 348e9d6f..f46d38f6 100644
--- a/README.rst
+++ b/README.rst
@@ -22,14 +22,14 @@ Hailo Model Zoo
:height: 20
-.. |compiler| image:: https://img.shields.io/badge/Hailo%20Dataflow%20Compiler-3.23.0-brightgreen.svg
+.. |compiler| image:: https://img.shields.io/badge/Hailo%20Dataflow%20Compiler-3.24.0-brightgreen.svg
:target: https://hailo.ai/contact-us/
:alt: Hailo Dataflow Compiler
:width: 180
:height: 20
-.. |runtime| image:: https://img.shields.io/badge/HailoRT%20(optional)-4.13.0-brightgreen.svg
+.. |runtime| image:: https://img.shields.io/badge/HailoRT%20(optional)-4.14.0-brightgreen.svg
:target: https://hailo.ai/contact-us/
:alt: HailoRT
:width: 170
diff --git a/docs/CHANGELOG.rst b/docs/CHANGELOG.rst
index dcea620c..33b9531e 100644
--- a/docs/CHANGELOG.rst
+++ b/docs/CHANGELOG.rst
@@ -1,6 +1,41 @@
Changelog
=========
+**v2.8**
+
+* Update to use Dataflow Compiler v3.24.0 (`developer-zone `_)
+* Updated to use HailoRT 4.14.0 (`developer-zone `_)
+* The Hailo Model Zoo now supports the following vision transformers models:
+
+ * vit_tiny / vit_small / vit_base - encoder based transformer with batchnorm for classification
+ * detr_resnet_v1_18_bn - encoder/decoder transformer for object detection
+ * clip_resnet_50 - Contrastive Language-Image Pre-Training for zero-shot classification
+ * yolov5s_c3tr - object detection model with a MHSA block
+
+* Using HailoRT-pp for postprocessing of the following variants:
+
+ * yolov5
+ * yolox
+ * ssd
+ * efficientdet
+ * yolov7
+
+* New Models:
+
+ * repvgg_a1 / repvgg_a2 - classification
+ * yolov8_seg: yolov8n_seg / yolov8s_seg / yolov8m_seg - instance segmentation
+ * yolov6n_0.2.1 - object detecion
+ * zero_dce - low-light enhancement
+
+* New retraining dockers for:
+
+ * yolov8
+ * yolov8_seg
+
+* Enable compilation for hailo15h device
+* Enable evaluation of models with RGBX / NV12 input format
+* Bug fixes
+
**v2.7**
* Update to use Dataflow Compiler v3.23.0 (`developer-zone `_)
diff --git a/docs/DATA.rst b/docs/DATA.rst
index 85aa2afa..b8647705 100644
--- a/docs/DATA.rst
+++ b/docs/DATA.rst
@@ -34,6 +34,8 @@ We recommend to define the data directory path yourself, by setting the ``HMZ_DA
* `CelebA`_
* `LFW`_
* `BSD100`_
+ * `CIFAR100`_
+ * `LOL`_
.. _ImageNet:
@@ -728,3 +730,71 @@ Manual Download (Optional)
python hailo_model_zoo/datasets/create_bsd100_tfrecord.py val --lr /path/to/LRbicx4 --hr /path/to/GTmod12
python hailo_model_zoo/datasets/create_bsd100_tfrecord.py calib --lr /path/to/LRbicx4 --hr /path/to/GTmod12
+
+
+.. _CIFAR100:
+
+CIFAR100
+------
+
+To evaluate/optimize/compile the CLIP models of the
+Hailo Model Zoo you should generate the CIFAR100 TFRecord files.
+
+Run the creation scripts:
+
+.. code-block::
+
+ python hailo_model_zoo/datasets/create_cifar100_tfrecord.py val
+ python hailo_model_zoo/datasets/create_cifar100_tfrecord.py calib
+
+
+.. _LOL:
+
+LOL
+------
+
+To evaluate/optimize/compile the low light enhancement models of the
+Hailo Model Zoo you should generate the LOL TFRecord files.
+
+Run the creation scripts:
+
+.. code-block::
+
+ python hailo_model_zoo/datasets/create_lol_tfrecord.py val
+ python hailo_model_zoo/datasets/create_lol_tfrecord.py calib
+
+Manual Download (Optional)
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+#. Download the LOL dataset from `here <"https://drive.google.com/uc?export=download&id=157bjO1_cFuSd0HWDUuAmcHRJDVyWpOxB&authuser=0">`_ and extract.
+ The expected dataset structure:
+
+ .. code-block::
+
+ lol_dataset
+ |_ eval15
+ |_ high
+ | |_ 111.png
+ | |_ 146.png
+ | |_ ...
+ |_ low
+ | |_ 111.png
+ | |_ 146.png
+ | |_ ...
+ |_ our485
+ |_ high
+ | |_ 100.png
+ | |_ 101.png
+ | |_ ...
+ |_ low
+ | |_ 100.png
+ | |_ 101.png
+ | |_ ...
+
+
+#. Run the scripts:
+
+ .. code-block::
+
+ python hailo_model_zoo/datasets/create_lol_tfrecord.py val --ll /path/to/val/lowlight/images --lle /path/to/val/highlight/images
+ python hailo_model_zoo/datasets/create_lol_tfrecord.py calib --ll /path/to/train/lowlight/images --lle /path/to/train/highlight/images
diff --git a/docs/GETTING_STARTED.rst b/docs/GETTING_STARTED.rst
index 5515972c..12ad6f91 100644
--- a/docs/GETTING_STARTED.rst
+++ b/docs/GETTING_STARTED.rst
@@ -9,8 +9,8 @@ System Requirements
* Ubuntu 20.04/22.04, 64 bit (supported also on Windows, under WSL2)
* Python 3.8/3.9/3.10, including ``pip`` and ``virtualenv``
-* Hailo Dataflow Compiler v3.23.0 (Obtain from `hailo.ai `_\ )
-* HailoRT 4.13.0 (Obtain from `hailo.ai `_\ ) - required only for inference on Hailo-8.
+* Hailo Dataflow Compiler v3.24.0 (Obtain from `hailo.ai `_\ )
+* HailoRT 4.14.0 (Obtain from `hailo.ai `_\ ) - required only for inference on Hailo-8.
* The Hailo Model Zoo supports Hailo-8 connected via PCIe only.
* Nvidia’s Pascal/Turing/Ampere GPU architecture (such as Titan X Pascal, GTX 1080 Ti, RTX 2080 Ti, or RTX A4000)
* GPU driver version 470
@@ -109,6 +109,12 @@ The pre-trained models are stored on AWS S3 and will be downloaded automatically
hailomz parse
+* The default compilation target is Hailo-8. To compile for different architecture (Hailo-15H for example), use ``--hw_arch hailo15h`` as CLI argument:
+
+.. code-block::
+
+ hailomz parse --hw-arch hailo15h
+
Profiling
---------
@@ -167,17 +173,23 @@ To run the Hailo compiler and generate the Hailo Executable Format (HEF) file:
hailomz compile
+By default the compilation target is Hailo-8. To compile for a different architecture use ``--hw-arch`` command line argument:
+
+.. code-block::
+
+ hailomz compile --hw-arch hailo15h
+
To generate the HEF starting from a previously generated HAR file:
.. code-block::
- hailomz compile --har /path/to/model.har
+ hailomz compile --har /path/to/model.har --hw-arch
In order to achieve highest performance, one could use the performance flag:
.. code-block::
- hailomz optimize --performance
+ hailomz optimize --performance --hw-arch
The flag will be ignored on models that do not support this feature.
The default and performance model scripts are located on `hailo_model_zoo/cfg/alls/`
@@ -230,6 +242,8 @@ To explore other options (for example: changing the default batch-size) use:
hailomz eval --help
+* Currently MZ evaluation can be done only on hailo8
+
Visualization
-------------
diff --git a/docs/HAILO_MODELS.rst b/docs/HAILO_MODELS.rst
index eb51e24b..a777ebc3 100644
--- a/docs/HAILO_MODELS.rst
+++ b/docs/HAILO_MODELS.rst
@@ -7,7 +7,6 @@ Each model is accompanied with its own README, retraining docker and retraining
* FLOPs in the table are counted as MAC operations.
-* All models were compiled using Hailo Dataflow Compiler v3.23.0
* Supported tasks:
* `Object Detection`_
diff --git a/docs/PUBLIC_MODELS.rst b/docs/PUBLIC_MODELS.rst
index 588303f6..88d24b7c 100644
--- a/docs/PUBLIC_MODELS.rst
+++ b/docs/PUBLIC_MODELS.rst
@@ -13,7 +13,7 @@ Here, we give the full list of publicly pre-trained models supported by the Hail
* Network available in `Hailo Benchmark `_ are marked with |rocket|
* Networks available in `TAPPAS `_ are marked with |star|
* Benchmark, TAPPAS and Recommended networks run in performance mode
-* All models were compiled using Hailo Dataflow Compiler v3.23.0
+* All models were compiled using Hailo Dataflow Compiler v3.24.0
* Supported tasks:
* `Classification`_
@@ -29,6 +29,9 @@ Here, we give the full list of publicly pre-trained models supported by the Hail
* `Super Resolution`_
* `Face Recognition`_
* `Person Attribute`_
+ * `Face Attribute`_
+ * `Zero-shot Classification`_
+ * `Low Light Enhancement`_
* `Hand Landmark detection`_
@@ -49,7 +52,7 @@ ImageNet
- Quantized
- Input Resolution (HxWxC)
- Params (M)
- - MAC (G)
+ - OPS (G)
- Pretrained
- Source
- Compiled
@@ -58,280 +61,307 @@ ImageNet
- 79.36
- 300x300x3
- 10.55
- - 9.70
- - `link `_
+ - 19.4
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientnet_lite0
- 74.99
- - 73.91
+ - 73.81
- 224x224x3
- 4.63
- - 0.39
- - `link `_
+ - 0.78
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientnet_lite1
- 76.68
- 76.21
- 240x240x3
- 5.39
- - 0.61
- - `link `_
+ - 1.22
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientnet_lite2
- 77.45
- 76.74
- 260x260x3
- 6.06
- - 0.87
- - `link `_
+ - 1.74
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientnet_lite3
- 79.29
- 78.33
- 280x280x3
- 8.16
- - 1.40
- - `link `_
+ - 2.8
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientnet_lite4
- 80.79
- 80.47
- 300x300x3
- 12.95
- - 2.58
- - `link `_
+ - 5.10
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientnet_m |rocket|
- 78.91
- 78.63
- 240x240x3
- 6.87
- - 3.68
- - `link `_
+ - 7.32
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientnet_s
- 77.64
- 77.32
- 224x224x3
- 5.41
- - 2.36
- - `link `_
+ - 4.72
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - hardnet39ds
- 73.43
- - 72.33
+ - 72.92
- 224x224x3
- 3.48
- - 0.43
- - `link `_
+ - 0.86
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - hardnet68
- 75.47
- 75.04
- 224x224x3
- 17.56
- - 4.25
- - `link `_
+ - 8.5
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - inception_v1
- 69.74
- 69.54
- 224x224x3
- 6.62
- - 1.50
- - `link `_
+ - 3
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - mobilenet_v1
- 70.97
- - 70.25
+ - 70.15
- 224x224x3
- 4.22
- - 0.57
- - `link `_
+ - 1.14
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - mobilenet_v2_1.0 |rocket|
- 71.78
- 71.08
- 224x224x3
- 3.49
- - 0.31
- - `link `_
+ - 0.62
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - mobilenet_v2_1.4
- 74.18
- 73.07
- 224x224x3
- 6.09
- - 0.59
- - `link `_
+ - 1.18
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - mobilenet_v3
- 72.21
- 71.73
- 224x224x3
- 4.07
- - 1.00
- - `link `_
+ - 2
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - mobilenet_v3_large_minimalistic
- 72.11
- - 71.07
+ - 70.92
- 224x224x3
- 3.91
- - 0.21
- - `link `_
+ - 0.42
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - regnetx_1.6gf
- 77.05
- 76.75
- 224x224x3
- 9.17
- - 1.61
- - `link `_
+ - 3.22
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - regnetx_800mf
- 75.16
- 74.84
- 224x224x3
- 7.24
- - 0.80
- - `link `_
+ - 1.6
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - regnety_200mf
- 70.38
- - 69.91
+ - 70.02
- 224x224x3
- 3.15
- - 0.20
- - `link `_
+ - 0.4
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
+ * - repvgg_a1
+ - 74.4
+ - 73.61
+ - 224x224x3
+ - 12.79
+ - 4.7
+ - `download `_
+ - `link `_
+ - `download `_
+ * - repvgg_a2
+ - 76.52
+ - 75.08
+ - 224x224x3
+ - 25.5
+ - 10.2
+ - `download `_
+ - `link `_
+ - `download `_
* - resmlp12_relu
- 75.26
- - 74.16
+ - 74.32
- 224x224x3
- 15.77
- - 3.02
- - `link `_
+ - 6.04
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - resnet_v1_18
- 71.26
- 71.06
- 224x224x3
- 11.68
- - 1.82
- - `link `_
+ - 3.64
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - resnet_v1_34
- 72.7
- 72.14
- 224x224x3
- 21.79
- - 3.67
- - `link `_
+ - 7.34
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - resnet_v1_50 |rocket| |star|
- 75.12
- 74.47
- 224x224x3
- 25.53
- - 3.49
- - `link `_
+ - 6.98
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - resnet_v2_18
- 69.57
- 69.1
- 224x224x3
- 11.68
- - 1.82
- - `link `_
+ - 3.64
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - resnet_v2_34
- 73.07
- 72.72
- 224x224x3
- 21.79
- - 3.67
- - `link `_
+ - 7.34
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - resnext26_32x4d
- 76.18
- 75.78
- 224x224x3
- 15.37
- - 2.48
- - `link `_
+ - 4.96
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - resnext50_32x4d
- 79.31
- 78.39
- 224x224x3
- 24.99
- - 4.24
- - `link `_
+ - 8.48
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - shufflenet_g8_w1
- 66.3
- 65.5
- 224x224x3
- 2.46
- - 0.18
- - `link `_
+ - 0.36
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - squeezenet_v1.1
- 59.85
- 59.4
- 224x224x3
- 1.24
- - 0.39
- - `link `_
+ - 0.78
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - vit_base
- 79.98
- - 77.25
+ - 78.88
- 224x224x3
- 86.5
- - 17.1
- - `link `_
+ - 34.2
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
+ * - vit_small
+ - 78.12
+ - 77.02
+ - 224x224x3
+ - 21.12
+ - 8.5
+ - `download `_
+ - `link `_
+ - `download `_
* - vit_tiny
- 68.02
- - 65.42
+ - 66.08
- 224x224x3
- 5.41
- - 2.36
- - `link `_
+ - 4.72
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
.. _Object Detection:
@@ -350,415 +380,433 @@ COCO
- Quantized
- Input Resolution (HxWxC)
- Params (M)
- - MAC (G)
+ - OPS (G)
- Pretrained
- Source
- Compiled
* - centernet_resnet_v1_18_postprocess
- 26.29
- - 24.16
+ - 23.39
- 512x512x3
- 14.22
- - 15.63
- - `link `_
+ - 31.26
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - centernet_resnet_v1_50_postprocess
- 31.78
- 29.64
- 512x512x3
- 30.07
- - 28.46
- - `link `_
+ - 56.92
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - damoyolo_tinynasL20_T
- 42.8
- 42.0
- 640x640x3
- 11.35
- - 9.03
- - `link `_
+ - 18.06
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - damoyolo_tinynasL25_S
- 46.53
- 46.04
- 640x640x3
- 16.25
- - 18.85
- - `link `_
+ - 37.7
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - damoyolo_tinynasL35_M
- 49.7
- 47.23
- 640x640x3
- 33.98
- - 30.87
- - `link `_
+ - 61.74
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
+ * - detr_resnet_v1_18_bn
+ - 33.9
+ - 30.6
+ - 800x800x3
+ - 32.42
+ - 59.16
+ - `download `_
+ - `link `_
+ - `download `_
* - efficientdet_lite0
- - 27.43
- - 26.6
+ - 27.32
+ - 26.48
- 320x320x3
- 3.56
- - 0.99
- - `link `_
+ - 1.98
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientdet_lite1
- - 32.46
- - 31.91
+ - 32.27
+ - 31.72
- 384x384x3
- 4.73
- - 2
- - `link `_
+ - 4
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - efficientdet_lite2
- - 36.16
- - 34.88
+ - 35.95
+ - 34.67
- 448x448x3
- 5.93
- - 3.42
- - `link `_
+ - 6.84
+ - `download `_
- `link `_
- - `link `_
- * - nanodet_repvgg
+ - `download `_
+ * - nanodet_repvgg |star|
- 29.3
- 28.53
- 416x416x3
- 6.74
- - 5.64
- - `link `_
+ - 11.28
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
+ * - nanodet_repvgg_a12
+ - 33.7
+ - 32.0
+ - 640x640x3
+ - 5.13
+ - 28.23
+ - `download `_
+ - `link `_
+ - `download `_
* - nanodet_repvgg_a1_640
- 33.28
- 32.88
- 640x640x3
- 10.79
- - 21.4
- - `link `_
+ - 42.8
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - ssd_mobilenet_v1 |rocket| |star|
- 23.17
- - 22.37
+ - 22.17
- 300x300x3
- 6.79
- - 1.25
- - `link `_
+ - 2.5
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - ssd_mobilenet_v1_hd
- 17.66
- - 15.73
+ - 15.55
- 720x1280x3
- 6.81
- - 12.26
- - `link `_
+ - 24.52
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - ssd_mobilenet_v2
- 24.15
- - 23.07
+ - 22.94
- 300x300x3
- 4.46
- - 0.76
- - `link `_
+ - 1.52
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - tiny_yolov3
- 14.36
- - 14.16
+ - 13.61
- 416x416x3
- 8.85
- - 2.79
- - `link `_
+ - 5.58
+ - `download `_
- `link `_
- - `link `_
+ - `download `_
* - tiny_yolov4
- 19.18
- 17.73
- 416x416x3
- 6.05
- - 3.46
- - `link `_
+ - 6.92
+ - `download