forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
670 lines (596 loc) · 26.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Script for training an RL agent using the UVF algorithm.
To run locally: See run_train.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import tensorflow as tf
slim = tf.contrib.slim
import gin.tf
# pylint: disable=unused-import
import train_utils
import agent as agent_
from agents import circular_buffer
from utils import utils as uvf_utils
from environments import create_maze_env
# pylint: enable=unused-import
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('goal_sample_strategy', 'sample',
'None, sample, FuN')
LOAD_PATH = None
def collect_experience(tf_env, agent, meta_agent, state_preprocess,
replay_buffer, meta_replay_buffer,
action_fn, meta_action_fn,
environment_steps, num_episodes, num_resets,
episode_rewards, episode_meta_rewards,
store_context,
disable_agent_reset):
"""Collect experience in a tf_env into a replay_buffer using action_fn.
Args:
tf_env: A TFEnvironment.
agent: A UVF agent.
meta_agent: A Meta Agent.
replay_buffer: A Replay buffer to collect experience in.
meta_replay_buffer: A Replay buffer to collect meta agent experience in.
action_fn: A function to produce actions given current state.
meta_action_fn: A function to produce meta actions given current state.
environment_steps: A variable to count the number of steps in the tf_env.
num_episodes: A variable to count the number of episodes.
num_resets: A variable to count the number of resets.
store_context: A boolean to check if store context in replay.
disable_agent_reset: A boolean that disables agent from resetting.
Returns:
A collect_experience_op that excute an action and store into the
replay_buffers
"""
tf_env.start_collect()
state = tf_env.current_obs()
state_repr = state_preprocess(state)
action = action_fn(state, context=None)
with tf.control_dependencies([state]):
transition_type, reward, discount = tf_env.step(action)
def increment_step():
return environment_steps.assign_add(1)
def increment_episode():
return num_episodes.assign_add(1)
def increment_reset():
return num_resets.assign_add(1)
def update_episode_rewards(context_reward, meta_reward, reset):
new_episode_rewards = tf.concat(
[episode_rewards[:1] + context_reward, episode_rewards[1:]], 0)
new_episode_meta_rewards = tf.concat(
[episode_meta_rewards[:1] + meta_reward,
episode_meta_rewards[1:]], 0)
return tf.group(
episode_rewards.assign(
tf.cond(reset,
lambda: tf.concat([[0.], episode_rewards[:-1]], 0),
lambda: new_episode_rewards)),
episode_meta_rewards.assign(
tf.cond(reset,
lambda: tf.concat([[0.], episode_meta_rewards[:-1]], 0),
lambda: new_episode_meta_rewards)))
def no_op_int():
return tf.constant(0, dtype=tf.int64)
step_cond = agent.step_cond_fn(state, action,
transition_type,
environment_steps, num_episodes)
reset_episode_cond = agent.reset_episode_cond_fn(
state, action,
transition_type, environment_steps, num_episodes)
reset_env_cond = agent.reset_env_cond_fn(state, action,
transition_type,
environment_steps, num_episodes)
increment_step_op = tf.cond(step_cond, increment_step, no_op_int)
increment_episode_op = tf.cond(reset_episode_cond, increment_episode,
no_op_int)
increment_reset_op = tf.cond(reset_env_cond, increment_reset, no_op_int)
increment_op = tf.group(increment_step_op, increment_episode_op,
increment_reset_op)
with tf.control_dependencies([increment_op, reward, discount]):
next_state = tf_env.current_obs()
next_state_repr = state_preprocess(next_state)
next_reset_episode_cond = tf.logical_or(
agent.reset_episode_cond_fn(
state, action,
transition_type, environment_steps, num_episodes),
tf.equal(discount, 0.0))
if store_context:
context = [tf.identity(var) + tf.zeros_like(var) for var in agent.context_vars]
meta_context = [tf.identity(var) + tf.zeros_like(var) for var in meta_agent.context_vars]
else:
context = []
meta_context = []
with tf.control_dependencies([next_state] + context + meta_context):
if disable_agent_reset:
collect_experience_ops = [tf.no_op()] # don't reset agent
else:
collect_experience_ops = agent.cond_begin_episode_op(
tf.logical_not(reset_episode_cond),
[state, action, reward, next_state,
state_repr, next_state_repr],
mode='explore', meta_action_fn=meta_action_fn)
context_reward, meta_reward = collect_experience_ops
collect_experience_ops = list(collect_experience_ops)
collect_experience_ops.append(
update_episode_rewards(tf.reduce_sum(context_reward), meta_reward,
reset_episode_cond))
meta_action_every_n = agent.tf_context.meta_action_every_n
with tf.control_dependencies(collect_experience_ops):
transition = [state, action, reward, discount, next_state]
meta_action = tf.to_float(
tf.concat(context, -1)) # Meta agent action is low-level context
meta_end = tf.logical_and( # End of meta-transition.
tf.equal(agent.tf_context.t % meta_action_every_n, 1),
agent.tf_context.t > 1)
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
states_var = tf.get_variable('states_var',
[meta_action_every_n, state.shape[-1]],
state.dtype)
actions_var = tf.get_variable('actions_var',
[meta_action_every_n, action.shape[-1]],
action.dtype)
state_var = tf.get_variable('state_var', state.shape, state.dtype)
reward_var = tf.get_variable('reward_var', reward.shape, reward.dtype)
meta_action_var = tf.get_variable('meta_action_var',
meta_action.shape, meta_action.dtype)
meta_context_var = [
tf.get_variable('meta_context_var%d' % idx,
meta_context[idx].shape, meta_context[idx].dtype)
for idx in range(len(meta_context))]
actions_var_upd = tf.scatter_update(
actions_var, (agent.tf_context.t - 2) % meta_action_every_n, action)
with tf.control_dependencies([actions_var_upd]):
actions = tf.identity(actions_var) + tf.zeros_like(actions_var)
meta_reward = tf.identity(meta_reward) + tf.zeros_like(meta_reward)
meta_reward = tf.reshape(meta_reward, reward.shape)
reward = 0.1 * meta_reward
meta_transition = [state_var, meta_action_var,
reward_var + reward,
discount * (1 - tf.to_float(next_reset_episode_cond)),
next_state]
meta_transition.extend([states_var, actions])
if store_context: # store current and next context into replay
transition += context + list(agent.context_vars)
meta_transition += meta_context_var + list(meta_agent.context_vars)
meta_step_cond = tf.squeeze(tf.logical_and(step_cond, tf.logical_or(next_reset_episode_cond, meta_end)))
collect_experience_op = tf.group(
replay_buffer.maybe_add(transition, step_cond),
meta_replay_buffer.maybe_add(meta_transition, meta_step_cond),
)
with tf.control_dependencies([collect_experience_op]):
collect_experience_op = tf.cond(reset_env_cond,
tf_env.reset,
tf_env.current_time_step)
meta_period = tf.equal(agent.tf_context.t % meta_action_every_n, 1)
states_var_upd = tf.scatter_update(
states_var, (agent.tf_context.t - 1) % meta_action_every_n,
next_state)
state_var_upd = tf.assign(
state_var,
tf.cond(meta_period, lambda: next_state, lambda: state_var))
reward_var_upd = tf.assign(
reward_var,
tf.cond(meta_period,
lambda: tf.zeros_like(reward_var),
lambda: reward_var + reward))
meta_action = tf.to_float(tf.concat(agent.context_vars, -1))
meta_action_var_upd = tf.assign(
meta_action_var,
tf.cond(meta_period, lambda: meta_action, lambda: meta_action_var))
meta_context_var_upd = [
tf.assign(
meta_context_var[idx],
tf.cond(meta_period,
lambda: meta_agent.context_vars[idx],
lambda: meta_context_var[idx]))
for idx in range(len(meta_context))]
return tf.group(
collect_experience_op,
states_var_upd,
state_var_upd,
reward_var_upd,
meta_action_var_upd,
*meta_context_var_upd)
def sample_best_meta_actions(state_reprs, next_state_reprs, prev_meta_actions,
low_states, low_actions, low_state_reprs,
inverse_dynamics, uvf_agent, k=10):
"""Return meta-actions which approximately maximize low-level log-probs."""
sampled_actions = inverse_dynamics.sample(state_reprs, next_state_reprs, k, prev_meta_actions)
sampled_actions = tf.stop_gradient(sampled_actions)
sampled_log_probs = tf.reshape(uvf_agent.log_probs(
tf.tile(low_states, [k, 1, 1]),
tf.tile(low_actions, [k, 1, 1]),
tf.tile(low_state_reprs, [k, 1, 1]),
[tf.reshape(sampled_actions, [-1, sampled_actions.shape[-1]])]),
[k, low_states.shape[0],
low_states.shape[1], -1])
fitness = tf.reduce_sum(sampled_log_probs, [2, 3])
best_actions = tf.argmax(fitness, 0)
actions = tf.gather_nd(
sampled_actions,
tf.stack([best_actions,
tf.range(prev_meta_actions.shape[0], dtype=tf.int64)], -1))
return actions
@gin.configurable
def train_uvf(train_dir,
environment=None,
num_bin_actions=3,
agent_class=None,
meta_agent_class=None,
state_preprocess_class=None,
inverse_dynamics_class=None,
exp_action_wrapper=None,
replay_buffer=None,
meta_replay_buffer=None,
replay_num_steps=1,
meta_replay_num_steps=1,
critic_optimizer=None,
actor_optimizer=None,
meta_critic_optimizer=None,
meta_actor_optimizer=None,
repr_optimizer=None,
relabel_contexts=False,
meta_relabel_contexts=False,
batch_size=64,
repeat_size=0,
num_episodes_train=2000,
initial_episodes=2,
initial_steps=None,
num_updates_per_observation=1,
num_collect_per_update=1,
num_collect_per_meta_update=1,
gamma=1.0,
meta_gamma=1.0,
reward_scale_factor=1.0,
target_update_period=1,
should_stop_early=None,
clip_gradient_norm=0.0,
summarize_gradients=False,
debug_summaries=False,
log_every_n_steps=100,
prefetch_queue_capacity=2,
policy_save_dir='policy',
save_policy_every_n_steps=1000,
save_policy_interval_secs=0,
replay_context_ratio=0.0,
next_state_as_context_ratio=0.0,
state_index=0,
zero_timer_ratio=0.0,
timer_index=-1,
debug=False,
max_policies_to_save=None,
max_steps_per_episode=None,
load_path=LOAD_PATH):
"""Train an agent."""
tf_env = create_maze_env.TFPyEnvironment(environment)
observation_spec = [tf_env.observation_spec()]
action_spec = [tf_env.action_spec()]
max_steps_per_episode = max_steps_per_episode or tf_env.pyenv.max_episode_steps
assert max_steps_per_episode, 'max_steps_per_episode need to be set'
if initial_steps is None:
initial_steps = initial_episodes * max_steps_per_episode
if agent_class.ACTION_TYPE == 'discrete':
assert False
else:
assert agent_class.ACTION_TYPE == 'continuous'
assert agent_class.ACTION_TYPE == meta_agent_class.ACTION_TYPE
with tf.variable_scope('meta_agent'):
meta_agent = meta_agent_class(
observation_spec,
action_spec,
tf_env,
debug_summaries=debug_summaries)
meta_agent.set_replay(replay=meta_replay_buffer)
with tf.variable_scope('uvf_agent'):
uvf_agent = agent_class(
observation_spec,
action_spec,
tf_env,
debug_summaries=debug_summaries)
uvf_agent.set_meta_agent(agent=meta_agent)
uvf_agent.set_replay(replay=replay_buffer)
with tf.variable_scope('state_preprocess'):
state_preprocess = state_preprocess_class()
with tf.variable_scope('inverse_dynamics'):
inverse_dynamics = inverse_dynamics_class(
meta_agent.sub_context_as_action_specs[0])
# Create counter variables
global_step = tf.contrib.framework.get_or_create_global_step()
num_episodes = tf.Variable(0, dtype=tf.int64, name='num_episodes')
num_resets = tf.Variable(0, dtype=tf.int64, name='num_resets')
num_updates = tf.Variable(0, dtype=tf.int64, name='num_updates')
num_meta_updates = tf.Variable(0, dtype=tf.int64, name='num_meta_updates')
episode_rewards = tf.Variable([0.] * 100, name='episode_rewards')
episode_meta_rewards = tf.Variable([0.] * 100, name='episode_meta_rewards')
# Create counter variables summaries
train_utils.create_counter_summaries([
('environment_steps', global_step),
('num_episodes', num_episodes),
('num_resets', num_resets),
('num_updates', num_updates),
('num_meta_updates', num_meta_updates),
('replay_buffer_adds', replay_buffer.get_num_adds()),
('meta_replay_buffer_adds', meta_replay_buffer.get_num_adds()),
])
tf.summary.scalar('avg_episode_rewards',
tf.reduce_mean(episode_rewards[1:]))
tf.summary.scalar('avg_episode_meta_rewards',
tf.reduce_mean(episode_meta_rewards[1:]))
tf.summary.histogram('episode_rewards', episode_rewards[1:])
tf.summary.histogram('episode_meta_rewards', episode_meta_rewards[1:])
# Create init ops
action_fn = uvf_agent.action
action_fn = uvf_agent.add_noise_fn(action_fn, global_step=None)
meta_action_fn = meta_agent.action
meta_action_fn = meta_agent.add_noise_fn(meta_action_fn, global_step=None)
meta_actions_fn = meta_agent.actions
meta_actions_fn = meta_agent.add_noise_fn(meta_actions_fn, global_step=None)
init_collect_experience_op = collect_experience(
tf_env,
uvf_agent,
meta_agent,
state_preprocess,
replay_buffer,
meta_replay_buffer,
action_fn,
meta_action_fn,
environment_steps=global_step,
num_episodes=num_episodes,
num_resets=num_resets,
episode_rewards=episode_rewards,
episode_meta_rewards=episode_meta_rewards,
store_context=True,
disable_agent_reset=False,
)
# Create train ops
collect_experience_op = collect_experience(
tf_env,
uvf_agent,
meta_agent,
state_preprocess,
replay_buffer,
meta_replay_buffer,
action_fn,
meta_action_fn,
environment_steps=global_step,
num_episodes=num_episodes,
num_resets=num_resets,
episode_rewards=episode_rewards,
episode_meta_rewards=episode_meta_rewards,
store_context=True,
disable_agent_reset=False,
)
train_op_list = []
repr_train_op = tf.constant(0.0)
for mode in ['meta', 'nometa']:
if mode == 'meta':
agent = meta_agent
buff = meta_replay_buffer
critic_opt = meta_critic_optimizer
actor_opt = meta_actor_optimizer
relabel = meta_relabel_contexts
num_steps = meta_replay_num_steps
my_gamma = meta_gamma,
n_updates = num_meta_updates
else:
agent = uvf_agent
buff = replay_buffer
critic_opt = critic_optimizer
actor_opt = actor_optimizer
relabel = relabel_contexts
num_steps = replay_num_steps
my_gamma = gamma
n_updates = num_updates
with tf.name_scope(mode):
batch = buff.get_random_batch(batch_size, num_steps=num_steps)
states, actions, rewards, discounts, next_states = batch[:5]
with tf.name_scope('Reward'):
tf.summary.scalar('average_step_reward', tf.reduce_mean(rewards))
rewards *= reward_scale_factor
batch_queue = slim.prefetch_queue.prefetch_queue(
[states, actions, rewards, discounts, next_states] + batch[5:],
capacity=prefetch_queue_capacity,
name='batch_queue')
batch_dequeue = batch_queue.dequeue()
if repeat_size > 0:
batch_dequeue = [
tf.tile(batch, (repeat_size+1,) + (1,) * (batch.shape.ndims - 1))
for batch in batch_dequeue
]
batch_size *= (repeat_size + 1)
states, actions, rewards, discounts, next_states = batch_dequeue[:5]
if mode == 'meta':
low_states = batch_dequeue[5]
low_actions = batch_dequeue[6]
low_state_reprs = state_preprocess(low_states)
state_reprs = state_preprocess(states)
next_state_reprs = state_preprocess(next_states)
if mode == 'meta': # Re-label meta-action
prev_actions = actions
if FLAGS.goal_sample_strategy == 'None':
pass
elif FLAGS.goal_sample_strategy == 'FuN':
actions = inverse_dynamics.sample(state_reprs, next_state_reprs, 1, prev_actions, sc=0.1)
actions = tf.stop_gradient(actions)
elif FLAGS.goal_sample_strategy == 'sample':
actions = sample_best_meta_actions(state_reprs, next_state_reprs, prev_actions,
low_states, low_actions, low_state_reprs,
inverse_dynamics, uvf_agent, k=10)
else:
assert False
if state_preprocess.trainable and mode == 'meta':
# Representation learning is based on meta-transitions, but is trained
# along with low-level policy updates.
repr_loss, _, _ = state_preprocess.loss(states, next_states, low_actions, low_states)
repr_train_op = slim.learning.create_train_op(
repr_loss,
repr_optimizer,
global_step=None,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=state_preprocess.get_trainable_vars(),)
# Get contexts for training
contexts, next_contexts = agent.sample_contexts(
mode='train', batch_size=batch_size,
state=states, next_state=next_states,
)
if not relabel: # Re-label context (in the style of TDM or HER).
contexts, next_contexts = (
batch_dequeue[-2*len(contexts):-1*len(contexts)],
batch_dequeue[-1*len(contexts):])
merged_states = agent.merged_states(states, contexts)
merged_next_states = agent.merged_states(next_states, next_contexts)
if mode == 'nometa':
context_rewards, context_discounts = agent.compute_rewards(
'train', state_reprs, actions, rewards, next_state_reprs, contexts)
elif mode == 'meta': # Meta-agent uses sum of rewards, not context-specific rewards.
_, context_discounts = agent.compute_rewards(
'train', states, actions, rewards, next_states, contexts)
context_rewards = rewards
if agent.gamma_index is not None:
context_discounts *= tf.cast(
tf.reshape(contexts[agent.gamma_index], (-1,)),
dtype=context_discounts.dtype)
else: context_discounts *= my_gamma
critic_loss = agent.critic_loss(merged_states, actions,
context_rewards, context_discounts,
merged_next_states)
critic_loss = tf.reduce_mean(critic_loss)
actor_loss = agent.actor_loss(merged_states, actions,
context_rewards, context_discounts,
merged_next_states)
actor_loss *= tf.to_float( # Only update actor every N steps.
tf.equal(n_updates % target_update_period, 0))
critic_train_op = slim.learning.create_train_op(
critic_loss,
critic_opt,
global_step=n_updates,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=agent.get_trainable_critic_vars(),)
critic_train_op = uvf_utils.tf_print(
critic_train_op, [critic_train_op],
message='critic_loss',
print_freq=1000,
name='critic_loss')
train_op_list.append(critic_train_op)
if actor_loss is not None:
actor_train_op = slim.learning.create_train_op(
actor_loss,
actor_opt,
global_step=None,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=agent.get_trainable_actor_vars(),)
actor_train_op = uvf_utils.tf_print(
actor_train_op, [actor_train_op],
message='actor_loss',
print_freq=1000,
name='actor_loss')
train_op_list.append(actor_train_op)
assert len(train_op_list) == 4
# Update targets should happen after the networks have been updated.
with tf.control_dependencies(train_op_list[2:]):
update_targets_op = uvf_utils.periodically(
uvf_agent.update_targets, target_update_period, 'update_targets')
if meta_agent is not None:
with tf.control_dependencies(train_op_list[:2]):
update_meta_targets_op = uvf_utils.periodically(
meta_agent.update_targets, target_update_period, 'update_targets')
assert_op = tf.Assert( # Hack to get training to stop.
tf.less_equal(global_step, 200 + num_episodes_train * max_steps_per_episode),
[global_step])
with tf.control_dependencies([update_targets_op, assert_op]):
train_op = tf.add_n(train_op_list[2:], name='post_update_targets')
# Representation training steps on every low-level policy training step.
train_op += repr_train_op
with tf.control_dependencies([update_meta_targets_op, assert_op]):
meta_train_op = tf.add_n(train_op_list[:2],
name='post_update_meta_targets')
if debug_summaries:
train_.gen_debug_batch_summaries(batch)
slim.summaries.add_histogram_summaries(
uvf_agent.get_trainable_critic_vars(), 'critic_vars')
slim.summaries.add_histogram_summaries(
uvf_agent.get_trainable_actor_vars(), 'actor_vars')
train_ops = train_utils.TrainOps(train_op, meta_train_op,
collect_experience_op)
policy_save_path = os.path.join(train_dir, policy_save_dir, 'model.ckpt')
policy_vars = uvf_agent.get_actor_vars() + meta_agent.get_actor_vars() + [
global_step, num_episodes, num_resets
] + list(uvf_agent.context_vars) + list(meta_agent.context_vars) + state_preprocess.get_trainable_vars()
# add critic vars, since some test evaluation depends on them
policy_vars += uvf_agent.get_trainable_critic_vars() + meta_agent.get_trainable_critic_vars()
policy_saver = tf.train.Saver(
policy_vars, max_to_keep=max_policies_to_save, sharded=False)
lowlevel_vars = (uvf_agent.get_actor_vars() +
uvf_agent.get_trainable_critic_vars() +
state_preprocess.get_trainable_vars())
lowlevel_saver = tf.train.Saver(lowlevel_vars)
def policy_save_fn(sess):
policy_saver.save(
sess, policy_save_path, global_step=global_step, write_meta_graph=False)
if save_policy_interval_secs > 0:
tf.logging.info(
'Wait %d secs after save policy.' % save_policy_interval_secs)
time.sleep(save_policy_interval_secs)
train_step_fn = train_utils.TrainStep(
max_number_of_steps=num_episodes_train * max_steps_per_episode + 100,
num_updates_per_observation=num_updates_per_observation,
num_collect_per_update=num_collect_per_update,
num_collect_per_meta_update=num_collect_per_meta_update,
log_every_n_steps=log_every_n_steps,
policy_save_fn=policy_save_fn,
save_policy_every_n_steps=save_policy_every_n_steps,
should_stop_early=should_stop_early).train_step
local_init_op = tf.local_variables_initializer()
init_targets_op = tf.group(uvf_agent.update_targets(1.0),
meta_agent.update_targets(1.0))
def initialize_training_fn(sess):
"""Initialize training function."""
sess.run(local_init_op)
sess.run(init_targets_op)
if load_path:
tf.logging.info('Restoring low-level from %s' % load_path)
lowlevel_saver.restore(sess, load_path)
global_step_value = sess.run(global_step)
assert global_step_value == 0, 'Global step should be zero.'
collect_experience_call = sess.make_callable(
init_collect_experience_op)
for _ in range(initial_steps):
collect_experience_call()
train_saver = tf.train.Saver(max_to_keep=2, sharded=True)
tf.logging.info('train dir: %s', train_dir)
return slim.learning.train(
train_ops,
train_dir,
train_step_fn=train_step_fn,
save_interval_secs=FLAGS.save_interval_secs,
saver=train_saver,
log_every_n_steps=0,
global_step=global_step,
master="",
is_chief=(FLAGS.task == 0),
save_summaries_secs=FLAGS.save_summaries_secs,
init_fn=initialize_training_fn)