forked from cvg/Hierarchical-Localization
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualization.py
154 lines (134 loc) · 6.12 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import matplotlib.pyplot as plt
from matplotlib import cm
import random
import cv2
import numpy as np
import pickle
from .utils.read_write_model import read_images_binary, read_points3d_binary
from .utils.viz import plot_images, plot_keypoints, plot_matches, cm_RdGn
def read_image(path):
assert path.exists(), path
image = cv2.imread(str(path))
if len(image.shape) == 3:
image = image[:, :, ::-1]
return image
def visualize_sfm_2d(sfm_model, image_dir, color_by='visibility',
selected=[], n=1, seed=0, dpi=75):
assert sfm_model.exists()
assert image_dir.exists()
images = read_images_binary(sfm_model / 'images.bin')
if color_by in ['track_length', 'depth']:
points3D = read_points3d_binary(sfm_model / 'points3D.bin')
if not selected:
image_ids = list(images.keys())
selected = random.Random(seed).sample(image_ids, n)
for i in selected:
name = images[i].name
image = read_image(image_dir / name)
keypoints = images[i].xys
visible = images[i].point3D_ids != -1
if color_by == 'visibility':
color = [(0, 0, 1) if v else (1, 0, 0) for v in visible]
text = f'visible: {np.count_nonzero(visible)}/{len(visible)}'
elif color_by == 'track_length':
tl = np.array([len(points3D[j].image_ids) if j != -1 else 1
for j in images[i].point3D_ids])
max_, med_ = np.max(tl), np.median(tl[tl > 1])
tl = np.log(tl)
color = cm.jet(tl / tl.max()).tolist()
text = f'max/median track length: {max_}/{med_}'
elif color_by == 'depth':
p3ids = images[i].point3D_ids
p3D = np.array([points3D[j].xyz for j in p3ids if j != -1])
z = (images[i].qvec2rotmat() @ p3D.T)[-1] + images[i].tvec[-1]
z -= z.min()
color = cm.jet(z / np.percentile(z, 99.9))
text = f'visible: {np.count_nonzero(visible)}/{len(visible)}'
keypoints = keypoints[visible]
else:
raise NotImplementedError(f'Coloring not implemented: {color_by}.')
plot_images([image], dpi=dpi)
plot_keypoints([keypoints], colors=[color], ps=4)
fig = plt.gcf()
fig.text(
0.01, 0.99, text, transform=fig.axes[0].transAxes,
fontsize=10, va='top', ha='left', color='k',
bbox=dict(fc=(1, 1, 1, 0.5), edgecolor=(0, 0, 0, 0)))
fig.text(
0.01, 0.01, name, transform=fig.axes[0].transAxes,
fontsize=5, va='bottom', ha='left', color='w')
def visualize_loc(results, image_dir, sfm_model=None, top_k_db=2,
selected=[], n=1, seed=0, prefix=None, dpi=75):
assert image_dir.exists()
with open(str(results)+'_logs.pkl', 'rb') as f:
logs = pickle.load(f)
if not selected:
queries = list(logs['loc'].keys())
if prefix:
queries = [q for q in queries if q.startswith(prefix)]
selected = random.Random(seed).sample(queries, n)
is_sfm = sfm_model is not None
if is_sfm:
assert sfm_model.exists()
images = read_images_binary(sfm_model / 'images.bin')
points3D = read_points3d_binary(sfm_model / 'points3D.bin')
for q in selected:
q_image = read_image(image_dir / q)
loc = logs['loc'][q]
inliers = np.array(loc['PnP_ret']['inliers'])
mkp_q = loc['keypoints_query']
n = len(loc['db'])
if is_sfm:
# for each pair of query keypoint and its matched 3D point,
# we need to find its corresponding keypoint in each database image
# that observes it. We also count the number of inliers in each.
kp_idxs, kp_to_3D_to_db = loc['keypoint_index_to_db']
counts = np.zeros(n)
dbs_kp_q_db = [[] for _ in range(n)]
inliers_dbs = [[] for _ in range(n)]
for i, (inl, (p3D_id, db_idxs)) in enumerate(zip(inliers,
kp_to_3D_to_db)):
p3D = points3D[p3D_id]
for db_idx in db_idxs:
counts[db_idx] += inl
kp_db = p3D.point2D_idxs[
p3D.image_ids == loc['db'][db_idx]][0]
dbs_kp_q_db[db_idx].append((i, kp_db))
inliers_dbs[db_idx].append(inl)
else:
# for inloc the database keypoints are already in the logs
assert 'keypoints_db' in loc
assert 'indices_db' in loc
counts = np.array([
np.sum(loc['indices_db'][inliers] == i) for i in range(n)])
# display the database images with the most inlier matches
db_sort = np.argsort(-counts)
for db_idx in db_sort[:top_k_db]:
if is_sfm:
db = images[loc['db'][db_idx]]
db_name = db.name
db_kp_q_db = np.array(dbs_kp_q_db[db_idx])
kp_q = mkp_q[db_kp_q_db[:, 0]]
kp_db = db.xys[db_kp_q_db[:, 1]]
inliers_db = inliers_dbs[db_idx]
else:
db_name = loc['db'][db_idx]
kp_q = mkp_q[loc['indices_db'] == db_idx]
kp_db = loc['keypoints_db'][loc['indices_db'] == db_idx]
inliers_db = inliers[loc['indices_db'] == db_idx]
db_image = read_image(image_dir / db_name)
color = cm_RdGn(inliers_db).tolist()
text = f'inliers: {sum(inliers_db)}/{len(inliers_db)}'
plot_images([q_image, db_image], dpi=dpi)
plot_matches(kp_q, kp_db, color, a=0.1)
fig = plt.gcf()
fig.text(
0.01, 0.99, text, transform=fig.axes[0].transAxes,
fontsize=15, va='top', ha='left', color='k',
bbox=dict(fc=(1, 1, 1, 0.5), edgecolor=(0, 0, 0, 0)))
fig.text(
0.01, 0.01, q, transform=fig.axes[0].transAxes,
fontsize=5, va='bottom', ha='left', color='w')
fig.text(
0.01, 0.01, db_name, transform=fig.axes[1].transAxes,
fontsize=5, va='bottom', ha='left', color='w')