-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathRunGenMain.cpp
642 lines (540 loc) · 22.9 KB
/
RunGenMain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
#include "RunGen.h"
using namespace Halide::RunGen;
using Halide::Tools::BenchmarkConfig;
namespace {
struct RegisteredFilter {
struct RegisteredFilter *next;
int (*filter_argv_call)(void **);
const struct halide_filter_metadata_t *filter_metadata;
};
RegisteredFilter *registered_filters = nullptr;
extern "C" void halide_register_argv_and_metadata(
int (*filter_argv_call)(void **),
const struct halide_filter_metadata_t *filter_metadata,
const char *const *extra_key_value_pairs) {
auto *rf = new RegisteredFilter();
rf->next = registered_filters;
rf->filter_argv_call = filter_argv_call;
rf->filter_metadata = filter_metadata;
// RunGen ignores extra_key_value_pairs
registered_filters = rf;
}
std::string replace_all(const std::string &str,
const std::string &find,
const std::string &replace) {
size_t pos = 0;
std::string result = str;
while ((pos = result.find(find, pos)) != std::string::npos) {
result.replace(pos, find.length(), replace);
pos += replace.length();
}
return result;
}
void usage(const char *argv0) {
const std::string usage = R"USAGE(
Usage: $NAME$ argument=value [argument=value... ] [flags]
Arguments:
Specify the Generator's input and output values by name, in any order.
Scalar inputs are specified in the obvious syntax, e.g.
some_int=42 some_float=3.1415
You can also use the text `default` or `estimate` to use the default or
estimate value of the given input, respectively. (You can join these by
commas to give default-then-estimate or estimate-then-default behaviors.)
Buffer inputs and outputs are specified by pathname:
some_input_buffer=/path/to/existing/file.png
some_output_buffer=/path/to/create/output/file.png
We currently support JPG, PGM, PNG, PPM format. If the type or dimensions
of the input or output file type can't support the data (e.g., your filter
uses float32 input and output, and you load/save to PNG), we'll use the most
robust approximation within the format and issue a warning to stdout.
(We anticipate adding other image formats in the future, in particular,
TIFF and TMP.)
For inputs, there are also "pseudo-file" specifiers you can use; currently
supported are
zero:[NUM,NUM,...]
This input should be an image with the given extents, and all elements
set to zero of the appropriate type. (This is useful for benchmarking
filters that don't have performance variances with different data.)
constant:VALUE:[NUM,NUM,...]
Like zero, but allows an arbitrary value of the input's type.
identity:[NUM,NUM,...]
This input should be an image with the given extents, where diagonal
elements are set to one of the appropriate type, and the rest are zero.
Diagonal elements are those whose first two coordinates are equal.
random:SEED:[NUM,NUM,...]
This input should be an image with the given extents, and all elements
set to a random value of the appropriate type. The random values will
be constructed using the mt19937_64 engine, using the given seed;
all floating point values will be in a uniform distribution between
0.0 and 1.0, while integral values will be uniform across the entire
range of the type.
(We anticipate adding other pseudo-file inputs in the future, e.g.
various random distributions, gradients, rainbows, etc.)
In place of [NUM,NUM,...] for boundary, you may specify 'auto'; this
will run a bounds-query to choose a legal input size given the output
size constraints. (In general, this is useful only when also using
the --output_extents flag.)
In place of [NUM,NUM,...] for boundary, you may specify 'estimate';
this will use the estimated bounds specified in the code.
Flags:
--help:
print this message and exit.
--describe:
print names and types of all arguments to stdout and exit.
--output_extents=[NUM,NUM,...]
By default, we attempt to calculate a reasonable size for the output
buffers, based on the size of the input buffers and bounds query; if we
guess wrong, or you want to explicitly specify the desired output size,
you can specify the extent of each dimension with this flag:
--output_extents=[1000,100] # 2 dimensions: w=1000 h = 100
--output_extents=[100,200,3] # 3 dimensions: w=100 h=200 c=3
Note that if there are multiple outputs, all will be constrained
to this shape.
--verbose:
emit extra diagnostic output.
--quiet:
Don't log calls to halide_print() to stdout.
--benchmarks=all:
Run the filter with the given arguments many times to
produce an estimate of average execution time; this currently
runs "samples" sets of "iterations" each, and chooses the fastest
sample set.
--benchmark_min_time=DURATION_SECONDS [default = 0.1]:
Override the default minimum desired benchmarking time; ignored if
--benchmarks is not also specified.
--track_memory:
Override Halide memory allocator to track high-water mark of memory
allocation during run; note that this may slow down execution, so
benchmarks may be inaccurate if you combine --benchmark with this.
--default_input_buffers=VALUE:
Specify the value for all otherwise-unspecified buffer inputs, in the
same syntax in use above. If you omit =VALUE, "zero:auto" will be used.
--default_input_scalars=VALUE:
Specify the value for all otherwise-unspecified scalar inputs, in the
same syntax in use above. If you omit =VALUE, "estimate,default"
will be used.
--parsable_output:
Final output is emitted in an easy-to-parse output (one value per line),
rather than easy-for-humans.
--estimate_all:
Request that all inputs and outputs are based on estimate,
and fill buffers with random values. This is exactly equivalent to
specifying
--default_input_buffers=estimate_then_auto
--default_input_scalars=estimate
--output_extents=estimate
and is a convenience for automated benchmarking.
--success:
Print "Success!" to stdout if we exit with a result code of zero.
(This is mainly useful for use with Halide's testing infrastructure,
which relies on this for successful tests.)
--skip_bad_environement:
If the Generator is built for a runtime environment we don't have available
(e.g. Cuda on a system without Cuda installed), emit a [SKIP] warning to
stdout and return an exit code of zero; this allows for quiet "failures"
when used with CTest.
Known Issues:
* Filters running on GPU (vs CPU) have not been tested.
* Filters using buffer layouts other than planar (e.g. interleaved/chunky)
may be buggy.
)USAGE";
std::string basename = split_string(replace_all(argv0, "\\", "/"), "/").back();
std::cout << replace_all(usage, "$NAME$", basename);
}
// Utility class for installing memory-tracking machinery into the Halide runtime
// when --track_memory is specified.
class HalideMemoryTracker {
static HalideMemoryTracker *active;
std::mutex tracker_mutex;
// Total current CPU memory allocated via halide_malloc.
// Access controlled by tracker_mutex.
uint64_t memory_allocated{0};
// High-water mark of CPU memory allocated since program start
// (or last call to get_cpu_memory_highwater_reset).
// Access controlled by tracker_mutex.
uint64_t memory_highwater{0};
// Map of outstanding allocation sizes.
// Access controlled by tracker_mutex.
std::map<void *, size_t> memory_size_map;
void *tracker_malloc_impl(void *user_context, size_t x) {
std::lock_guard<std::mutex> lock(tracker_mutex);
void *ptr = halide_default_malloc(user_context, x);
memory_allocated += x;
if (memory_highwater < memory_allocated) {
memory_highwater = memory_allocated;
}
if (memory_size_map.find(ptr) != memory_size_map.end()) {
halide_error(user_context, "Tracking error in tracker_malloc");
}
memory_size_map[ptr] = x;
return ptr;
}
void tracker_free_impl(void *user_context, void *ptr) {
std::lock_guard<std::mutex> lock(tracker_mutex);
auto it = memory_size_map.find(ptr);
if (it == memory_size_map.end()) {
halide_error(user_context, "Tracking error in tracker_free");
}
size_t x = it->second;
memory_allocated -= x;
memory_size_map.erase(it);
halide_default_free(user_context, ptr);
}
static void *tracker_malloc(void *user_context, size_t x) {
return active->tracker_malloc_impl(user_context, x);
}
static void tracker_free(void *user_context, void *ptr) {
return active->tracker_free_impl(user_context, ptr);
}
public:
void install() {
assert(!active);
active = this;
halide_set_custom_malloc(tracker_malloc);
halide_set_custom_free(tracker_free);
}
uint64_t allocated() {
std::lock_guard<std::mutex> lock(tracker_mutex);
return memory_allocated;
}
uint64_t highwater() {
std::lock_guard<std::mutex> lock(tracker_mutex);
return memory_highwater;
}
void highwater_reset() {
std::lock_guard<std::mutex> lock(tracker_mutex);
memory_highwater = memory_allocated;
}
};
/* static */ HalideMemoryTracker *HalideMemoryTracker::active{nullptr};
bool log_info = false;
bool log_warn = true;
void do_log_cout(const std::string &s) {
std::cout << s;
}
void do_log_cerr(const std::string &s) {
std::cerr << s;
}
void do_log_info(const std::string &s) {
if (log_info) {
do_log_cerr(s);
}
}
void do_log_warn(const std::string &s) {
if (log_warn) {
do_log_cerr("Warning: " + s);
}
}
void do_log_fail(const std::string &s) {
do_log_cerr(s);
abort();
}
} // namespace
namespace Halide {
namespace RunGen {
Logger log() {
return {do_log_cout, do_log_info, do_log_warn, do_log_fail};
}
} // namespace RunGen
} // namespace Halide
int main(int argc, char **argv) {
if (argc <= 1) {
usage(argv[0]);
return 0;
}
if (registered_filters == nullptr) {
std::cerr << "No filters registered. Compile RunGenMain.cpp along with at least one 'registration' output from a generator.\n";
return 1;
}
// Look for --name
std::string filter_name;
for (int i = 1; i < argc; ++i) {
if (argv[i][0] == '-') {
const char *p = argv[i] + 1; // skip -
if (p[0] == '-') {
p++; // allow -- as well, because why not
}
std::vector<std::string> v = split_string(p, "=");
std::string flag_name = v[0];
std::string flag_value = v.size() > 1 ? v[1] : "";
// Check for the help flag early so that it takes
// precedence over other errors that occur before full
// argument parsing.
if (flag_name == "help") {
usage(argv[0]);
return 0;
}
if (v.size() > 2) {
fail() << "Invalid argument: " << argv[i];
}
if (flag_name != "name") {
continue;
}
if (!filter_name.empty()) {
fail() << "--name cannot be specified twice.";
}
filter_name = flag_value;
if (filter_name.empty()) {
fail() << "--name cannot be empty.";
}
}
}
auto *rf = registered_filters;
if (filter_name.empty()) {
// Just choose the first one.
if (rf->next != nullptr) {
std::ostringstream o;
o << "Must specify --name if multiple filters are registered; registered filters are:\n";
for (auto *rf = registered_filters; rf != nullptr; rf = rf->next) {
o << " " << rf->filter_metadata->name << "\n";
}
o << "\n";
fail() << o.str();
}
} else {
for (; rf != nullptr; rf = rf->next) {
if (filter_name == rf->filter_metadata->name) {
break;
}
}
if (rf == nullptr) {
std::ostringstream o;
o << "Filter " << filter_name << " not found; registered filters are:\n";
for (auto *rf = registered_filters; rf != nullptr; rf = rf->next) {
o << " " << rf->filter_metadata->name << "\n";
}
o << "\n";
fail() << o.str();
}
}
RunGen r(rf->filter_argv_call, rf->filter_metadata);
std::string user_specified_output_shape;
std::set<std::string> seen_args;
bool benchmark = false;
bool track_memory = false;
bool describe = false;
double benchmark_min_time = BenchmarkConfig().min_time;
std::string default_input_buffers;
std::string default_input_scalars;
std::string benchmarks_flag_value;
bool emit_success = false;
bool skip_bad_environment = false;
for (int i = 1; i < argc; ++i) {
if (argv[i][0] == '-') {
const char *p = argv[i] + 1; // skip -
if (p[0] == '-') {
p++; // allow -- as well, because why not
}
std::vector<std::string> v = split_string(p, "=");
std::string flag_name = v[0];
std::string flag_value = v.size() > 1 ? v[1] : "";
if (v.size() > 2) {
fail() << "Invalid argument: " << argv[i];
}
if (flag_name == "name") {
continue;
} else if (flag_name == "verbose") {
if (flag_value.empty()) {
flag_value = "true";
}
if (!parse_scalar(flag_value, &log_info)) {
fail() << "Invalid value for flag: " << flag_name;
}
} else if (flag_name == "quiet") {
if (flag_value.empty()) {
flag_value = "true";
}
bool quiet;
if (!parse_scalar(flag_value, &quiet)) {
fail() << "Invalid value for flag: " << flag_name;
}
r.set_quiet(quiet);
} else if (flag_name == "parsable_output") {
if (flag_value.empty()) {
flag_value = "true";
}
bool parsable_output;
if (!parse_scalar(flag_value, &parsable_output)) {
fail() << "Invalid value for flag: " << flag_name;
}
r.set_parsable_output(parsable_output);
} else if (flag_name == "describe") {
if (flag_value.empty()) {
flag_value = "true";
}
if (!parse_scalar(flag_value, &describe)) {
fail() << "Invalid value for flag: " << flag_name;
}
} else if (flag_name == "track_memory") {
if (flag_value.empty()) {
flag_value = "true";
}
if (!parse_scalar(flag_value, &track_memory)) {
fail() << "Invalid value for flag: " << flag_name;
}
} else if (flag_name == "benchmarks") {
benchmarks_flag_value = flag_value;
benchmark = true;
} else if (flag_name == "benchmark_min_time") {
if (!parse_scalar(flag_value, &benchmark_min_time)) {
fail() << "Invalid value for flag: " << flag_name;
}
} else if (flag_name == "default_input_buffers") {
default_input_buffers = flag_value;
if (default_input_buffers.empty()) {
default_input_buffers = "zero:auto";
}
} else if (flag_name == "default_input_scalars") {
default_input_scalars = flag_value;
if (default_input_scalars.empty()) {
default_input_scalars = "estimate,default";
}
} else if (flag_name == "output_extents") {
user_specified_output_shape = flag_value;
} else if (flag_name == "estimate_all") {
// Equivalent to:
// --default_input_buffers=random:0:estimate_then_auto
// --default_input_scalars=estimate
// --output_extents=estimate
default_input_buffers = "random:0:estimate_then_auto";
default_input_scalars = "estimate";
user_specified_output_shape = "estimate";
} else if (flag_name == "success") {
if (flag_value.empty()) {
flag_value = "true";
}
if (!parse_scalar(flag_value, &emit_success)) {
fail() << "Invalid value for flag: " << flag_name;
}
} else if (flag_name == "skip_bad_environment") {
if (flag_value.empty()) {
flag_value = "true";
}
if (!parse_scalar(flag_value, &skip_bad_environment)) {
fail() << "Invalid value for flag: " << flag_name;
}
} else {
usage(argv[0]);
fail() << "Unknown flag: " << flag_name;
}
} else {
// Assume it's a named Input or Output for the Generator,
// in the form name=value.
std::vector<std::string> v = split_string(argv[i], "=");
if (v.size() != 2 || v[0].empty() || v[1].empty()) {
fail() << "Invalid argument: " << argv[i];
}
r.parse_one(v[0], v[1], &seen_args);
}
}
if (skip_bad_environment) {
// Let's do some preflighting to see if we are trying to run on a system that
// definitely doesn't support our target. For now, we're just checking Cuda
// because it's the only thing needed for current Halide tests.
//
// TODO: add checking for other GPU (etc) backends.
std::set<std::string> tokens;
{
std::stringstream s(rf->filter_metadata->target);
std::string tok;
while (std::getline(s, tok, '-')) {
tokens.insert(tok);
}
}
if (tokens.count("cuda")) {
void *cuda_intf = halide_get_symbol("halide_cuda_device_interface");
if (cuda_intf == nullptr) {
std::cout << "[SKIP] This system requires Cuda, but the Halide Cuda runtime is not available.\n";
return 0;
}
typedef halide_device_interface_t *halide_device_interface_t_ptr;
typedef halide_device_interface_t_ptr (*GetDeviceInterfaceFn)();
GetDeviceInterfaceFn fn = reinterpret_cast<GetDeviceInterfaceFn>(cuda_intf);
halide_device_interface_t_ptr intf = fn();
int major, minor;
int err = intf->compute_capability(nullptr, &major, &minor);
if (err != 0) {
std::cout << "[SKIP] This system requires Cuda, which is not available.\n";
return 0;
}
const int version_available = major * 10 + minor;
int version_required = 20; // Minimum for any Halide-generated Cuda output
static const std::pair<const char *, int> capabilities[] = {
{"cuda_capability30", 30},
{"cuda_capability32", 32},
{"cuda_capability35", 35},
{"cuda_capability50", 50},
{"cuda_capability61", 61},
{"cuda_capability70", 70},
{"cuda_capability75", 75},
{"cuda_capability80", 80},
{"cuda_capability86", 86},
};
for (const auto &it : capabilities) {
if (tokens.count(it.first)) {
version_required = std::max(version_required, it.second);
}
}
if (version_available < version_required) {
std::cout << "[SKIP] This system supports only Cuda compute capability " << major << "." << minor << " but compute capability "
<< (version_required / 10) << "." << (version_required % 10) << " is required.\n";
return 0;
}
}
}
if (describe) {
r.describe();
return 0;
}
// It's OK to omit output arguments when we are benchmarking or tracking memory.
bool ok_to_omit_outputs = (benchmark || track_memory);
if (benchmark && track_memory) {
warn() << "Using --track_memory with --benchmarks will produce inaccurate benchmark results.";
}
// Check to be sure that all required arguments are specified.
r.validate(seen_args, default_input_buffers, default_input_scalars, ok_to_omit_outputs);
// Parse all the input arguments, loading images as necessary.
// (Don't handle outputs yet.)
r.load_inputs(user_specified_output_shape);
// Run a bounds query: we need to figure out how to allocate the output buffers,
// and the input buffers might need reshaping to satisfy constraints (e.g. a chunky/interleaved layout).
std::vector<Shape> constrained_shapes = r.run_bounds_query();
r.adapt_input_buffers(constrained_shapes);
r.allocate_output_buffers(constrained_shapes);
// If we're tracking memory, install the memory tracker *after* doing a bounds query.
HalideMemoryTracker tracker;
if (track_memory) {
tracker.install();
}
// This is a single-purpose binary to benchmark this filter, so we
// shouldn't be eagerly returning device memory.
if (auto result = halide_reuse_device_allocations(nullptr, true); result != halide_error_code_success) {
std::cerr << "halide_reuse_device_allocations() returned an error: " << (int)result << "\n";
}
if (benchmark) {
if (benchmarks_flag_value.empty()) {
benchmarks_flag_value = "all";
}
if (benchmarks_flag_value != "all") {
fail() << "The only valid value for --benchmarks is 'all'";
}
r.run_for_benchmark(benchmark_min_time);
} else {
r.run_for_output();
}
if (track_memory) {
// Ensure that we copy any GPU-output buffers back to host before
// we report on memory usage.
if (auto result = r.copy_outputs_to_host(); result != halide_error_code_success) {
std::cerr << "Warning: copy_outputs_to_host() returned error " << (int)result << "\n";
}
std::cout << "Maximum Halide memory: " << tracker.highwater()
<< " bytes for output of " << r.megapixels_out() << " mpix.\n";
}
// Save the output(s), if necessary.
r.save_outputs();
if (emit_success) {
std::cout << "Success!\n";
}
return 0;
}