-
Notifications
You must be signed in to change notification settings - Fork 84
/
model.py
executable file
·687 lines (596 loc) · 29.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import argparse
import pickle
import collections
import logging
import math
import os
import random
from sys import maxsize
import dynet as dy
import numpy as np
import time
import sys
import utils
Instance = collections.namedtuple("Instance", ["sentence", "tags"])
NONE_TAG = "<NONE>"
START_TAG = "<START>"
END_TAG = "<STOP>"
DEFAULT_WORD_EMBEDDING_SIZE = 100
# TRAIN_LIMIT = 1000000000
# TRAIN_LIMIT = 10000000
DEBUG_SCALE = 200
class BiLSTM_CRF:
def __init__(self, tagset_size, num_lstm_layers, hidden_dim, word_embeddings, no_we_update, use_char_rnn,
char_embeddings, char_hidden_dim, margins, lowercase_words, vocab_size=None,
word_embedding_dim=DEFAULT_WORD_EMBEDDING_SIZE,
charset_size=None, char_embedding_dim=50, tie_two_embeddings=False, use_we=True):
self.dropout = None
self.model = dy.Model()
self.tagset_size = tagset_size
self.margins = margins
self.we_update = not no_we_update
self.lowercase_words = lowercase_words
# Word embedding parameters
self.use_we = use_we
if use_we:
if word_embeddings is not None: # Use pretrained embeddings
vocab_size = word_embeddings.shape[0]
word_embedding_dim = word_embeddings.shape[1]
self.words_lookup = self.model.add_lookup_parameters((vocab_size, word_embedding_dim))
if word_embeddings is not None:
self.words_lookup.init_from_array(word_embeddings)
else:
self.words_lookup = None
# bigram embeddings
if options.bigram:
self.bigram_lookup = self.model.add_lookup_parameters((len(b2i), word_embedding_dim))
self.bigram_lookup.init_from_array(bigram_embeddings)
# Char LSTM Parameters
self.use_char_rnn = use_char_rnn
if use_char_rnn:
if char_embeddings is not None:
charset_size = char_embeddings.shape[0]
char_embedding_dim = char_embeddings.shape[1]
self.char_embedding_dim = char_embedding_dim
if tie_two_embeddings:
self.char_lookup = self.words_lookup
else:
self.char_lookup = self.model.add_lookup_parameters((charset_size, self.char_embedding_dim))
if char_embeddings is not None:
self.char_lookup.init_from_array(char_embeddings)
self.char_bi_lstm = dy.BiRNNBuilder(1, self.char_embedding_dim, char_hidden_dim, self.model, dy.LSTMBuilder)
# Cache char ids for each word for fast speed
self.word_to_char_ids = dict()
for word, word_id in w2i.items():
# Note: use original casing ("word") for characters
if utils.is_dataset_tag(word):
char_ids = [c2i[word]]
else:
char_ids = [c2i[c] for c in word]
self.word_to_char_ids[word_id] = char_ids
# Word LSTM parameters
if use_char_rnn:
if use_we:
input_dim = word_embedding_dim + char_hidden_dim
else:
input_dim = char_hidden_dim
else:
input_dim = word_embedding_dim
self.bi_lstm = dy.BiRNNBuilder(num_lstm_layers, input_dim, hidden_dim, self.model, dy.LSTMBuilder)
# Matrix that maps from Bi-LSTM output to num tags
if options.bigram:
self.lstm_to_tags_params = self.model.add_parameters((tagset_size, hidden_dim + word_embedding_dim * 2))
else:
self.lstm_to_tags_params = self.model.add_parameters((tagset_size, hidden_dim))
self.lstm_to_tags_bias = self.model.add_parameters(tagset_size)
self.mlp_out = self.model.add_parameters((tagset_size, tagset_size))
self.mlp_out_bias = self.model.add_parameters(tagset_size)
# Transition matrix for tagging layer, [i,j] is score of transitioning to i from j
self.transitions = self.model.add_lookup_parameters((tagset_size, tagset_size))
def set_dropout(self, p):
self.bi_lstm.set_dropout(p)
self.dropout = p
def disable_dropout(self):
self.bi_lstm.disable_dropout()
self.dropout = None
def word_rep(self, word):
'''
:param word: index of word in lookup table
'''
if options.bigram:
word = word[1]
pass
if self.use_char_rnn:
# Note: use original casing ("word") for characters
char_ids = self.word_to_char_ids[word]
char_embs = [self.char_lookup[cid] for cid in char_ids]
char_exprs = self.char_bi_lstm.transduce(char_embs)
if self.use_we:
wemb = dy.lookup(self.words_lookup, word, update=self.we_update)
return dy.concatenate([wemb, char_exprs[-1]])
else:
return char_exprs[-1]
else:
wemb = dy.lookup(self.words_lookup, word, update=self.we_update)
return wemb
def build_tagging_graph(self, sentence):
dy.renew_cg()
embeddings = [self.word_rep(w) for w in sentence]
lstm_out = self.bi_lstm.transduce(embeddings)
H = dy.parameter(self.lstm_to_tags_params)
Hb = dy.parameter(self.lstm_to_tags_bias)
O = dy.parameter(self.mlp_out)
Ob = dy.parameter(self.mlp_out_bias)
scores = []
if options.bigram:
for rep, word in zip(lstm_out, sentence):
bi1 = dy.lookup(self.bigram_lookup, word[0], update=self.we_update)
bi2 = dy.lookup(self.bigram_lookup, word[1], update=self.we_update)
if self.dropout is not None:
bi1 = dy.dropout(bi1, self.dropout)
bi2 = dy.dropout(bi2, self.dropout)
score_t = O * dy.tanh(H * dy.concatenate(
[bi1,
rep,
bi2]) + Hb) + Ob
scores.append(score_t)
else:
for rep in lstm_out:
score_t = O * dy.tanh(H * rep + Hb) + Ob
scores.append(score_t)
return scores
def score_sentence(self, observations, tags):
if len(tags) == 0:
tags = [t2i[NONE_TAG]] * len(observations)
assert len(observations) == len(tags)
score_seq = [0]
score = dy.scalarInput(0)
tags = [t2i[START_TAG]] + tags
for i, obs in enumerate(observations):
score = score + dy.pick(self.transitions[tags[i + 1]], tags[i]) + dy.pick(obs, tags[i + 1])
score_seq.append(score.value())
score = score + dy.pick(self.transitions[t2i[END_TAG]], tags[-1])
return score
def viterbi_loss(self, sentence, gold_tags, use_margins=True):
observations = self.build_tagging_graph(sentence)
viterbi_tags, viterbi_score = self.viterbi_decoding(observations, gold_tags, use_margins)
if viterbi_tags != gold_tags:
gold_score = self.score_sentence(observations, gold_tags)
return (viterbi_score - gold_score), viterbi_tags
else:
return dy.scalarInput(0), viterbi_tags
def neg_log_loss(self, sentence, tags):
observations = self.build_tagging_graph(sentence)
gold_score = self.score_sentence(observations, tags)
forward_score = self.forward(observations)
return forward_score - gold_score
def forward(self, observations):
def log_sum_exp(scores):
npval = scores.npvalue()
argmax_score = np.argmax(npval)
max_score_expr = dy.pick(scores, argmax_score)
max_score_expr_broadcast = dy.concatenate([max_score_expr] * self.tagset_size)
return max_score_expr + dy.log(dy.sum_dim(dy.transpose(dy.exp(scores - max_score_expr_broadcast)),[1]))
init_alphas = [-1e10] * self.tagset_size
init_alphas[t2i[START_TAG]] = 0
for_expr = dy.inputVector(init_alphas)
for obs in observations:
alphas_t = []
for next_tag in range(self.tagset_size):
obs_broadcast = dy.concatenate([dy.pick(obs, next_tag)] * self.tagset_size)
next_tag_expr = for_expr + self.transitions[next_tag] + obs_broadcast
alphas_t.append(log_sum_exp(next_tag_expr))
for_expr = dy.concatenate(alphas_t)
terminal_expr = for_expr + self.transitions[t2i["<STOP>"]]
alpha = log_sum_exp(terminal_expr)
return alpha
def viterbi_decoding(self, observations, gold_tags, use_margins):
backpointers = []
init_vvars = [-1e10] * self.tagset_size
init_vvars[t2i[START_TAG]] = 0 # <Start> has all the probability
for_expr = dy.inputVector(init_vvars)
trans_exprs = [self.transitions[idx] for idx in range(self.tagset_size)]
for gold, obs in zip(gold_tags, observations):
bptrs_t = []
vvars_t = []
for next_tag in range(self.tagset_size):
next_tag_expr = for_expr + trans_exprs[next_tag]
next_tag_arr = next_tag_expr.npvalue()
best_tag_id = np.argmax(next_tag_arr)
bptrs_t.append(best_tag_id)
vvars_t.append(dy.pick(next_tag_expr, best_tag_id))
for_expr = dy.concatenate(vvars_t) + obs
# optional margin adaptation
if use_margins and self.margins != 0:
adjust = [self.margins] * self.tagset_size
adjust[gold] = 0
for_expr = for_expr + dy.inputVector(adjust)
backpointers.append(bptrs_t)
# Perform final transition to terminal
terminal_expr = for_expr + trans_exprs[t2i[END_TAG]]
terminal_arr = terminal_expr.npvalue()
best_tag_id = np.argmax(terminal_arr)
path_score = dy.pick(terminal_expr, best_tag_id)
# Reverse over the backpointers to get the best path
best_path = [best_tag_id] # Start with the tag that was best for terminal
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
start = best_path.pop() # Remove the start symbol
best_path.reverse()
assert start == t2i[START_TAG]
# Return best path and best path's score
return best_path, path_score
def save(self, file_name):
# members_to_save = []
# members_to_save.append(self.words_lookup)
# if (self.use_char_rnn):
# members_to_save.append(self.char_lookup)
# members_to_save.append(self.char_bi_lstm)
# members_to_save.append(self.bi_lstm)
# members_to_save.extend(utils.sortvals(self.lstm_to_tags_params))
# members_to_save.extend(utils.sortvals(self.lstm_to_tags_bias))
# members_to_save.extend(utils.sortvals(self.mlp_out))
# members_to_save.extend(utils.sortvals(self.mlp_out_bias))
# members_to_save.extend(utils.sortvals(self.transitions))
self.model.save(file_name)
def load(self, file_name):
self.model.populate(file_name)
# ===-----------------------------------------------------------------------===
# Argument parsing
# ===-----------------------------------------------------------------------===
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", required=True, dest="dataset", help=".pkl file to use")
parser.add_argument("--word-embeddings", dest="word_embeddings", help="File from which to read in pretrained embeds")
parser.add_argument("--num-epochs", default=20, dest="num_epochs", type=int,
help="Number of full passes through training set")
parser.add_argument("--batch-size", default=20, dest="batch_size", type=int,
help="Minibatch size of training set")
parser.add_argument("--lstm-layers", default=1, dest="lstm_layers", type=int, help="Number of LSTM layers")
parser.add_argument("--hidden-dim", default=128, dest="hidden_dim", type=int, help="Size of LSTM hidden layers")
parser.add_argument("--learning-rate", default=0.01, dest="learning_rate", type=float, help="Initial learning rate")
parser.add_argument("--learning-rate-decay", default=0.9, dest="learning_rate_decay", type=float,
help="Learning rate decay")
parser.add_argument("--dropout", default=-1, dest="dropout", type=float,
help="Amount of dropout(not keep rate, but drop rate) to apply to embeddings part of graph")
parser.add_argument("--no-we", dest="no_we", action="store_true", help="Word Embeddings aren't used")
parser.add_argument("--no-we-update", dest="no_we_update", action="store_true", help="Word Embeddings aren't updated")
parser.add_argument("--use-char-rnn", dest="use_char_rnn", action="store_true", help="Use character RNN")
parser.add_argument("--char-embeddings", dest="char_embeddings", help="File from which to read in pretrained embeds")
parser.add_argument("--char-embedding-dim", default=100, dest="char_embedding_dim", type=int,
help="Dimension of char embedding")
parser.add_argument("--char-hidden-dim", default=100, dest="char_hidden_dim", type=int,
help="Dimension of char LSTM hidden layer size")
parser.add_argument("--lowercase-words", dest="lowercase_words", action="store_true",
help="Words are all in lowercased form (characters stay the same)")
parser.add_argument("--log-dir", default="result", dest="log_dir",
help="Directory where to write logs / serialized models")
parser.add_argument("--task-name", default=time.strftime("%Y-%m-%d-%H-%M-%S"), dest="task_name",
help="Name for this task, use a comprehensive one")
parser.add_argument("--no-model", dest="no_model", action="store_true", help="Don't serialize model")
parser.add_argument("--always-model", dest="always_model", action="store_true",
help="Always serialize model after every epoch")
parser.add_argument("--old-model", dest="old_model", help="Path to old model for incremental training")
parser.add_argument("--skip-dev", dest="skip_dev", action="store_true", help="Skip dev set, would save some time")
parser.add_argument("--subset", dest="subset", help="Only train and test on a subset of the whole dataset")
parser.add_argument("--dynet-mem", help="Ignore this outside argument")
parser.add_argument("--dynet-autobatch", help="Ignore this outside argument")
parser.add_argument("--dynet-seed", dest="dynet_seed", type=int, help="Ignore this outside argument")
parser.add_argument("--dynet-gpus", dest="dynet_gpus", type=int, help="Specify how many GPUs you want to use")
parser.add_argument("--dynet-weight-decay", dest="dynet_weight_decay", type=float,
help="If this value is set to wd, each parameter in the model is multiplied by (1-wd) after every "
"parameter update. This weight decay is similar to L2 regularization, but not exactly the "
"same.")
parser.add_argument("--clip-norm", dest="clip_norm", type=float, help="Gradient clipping")
parser.add_argument("--python-seed", dest="python_seed", type=int, default=random.randrange(maxsize),
help="Random seed of Python and NumPy")
parser.add_argument("--debug", dest="debug", default=False, action="store_true", help="Debug mode")
parser.add_argument("--test", dest="test", action="store_true", help="Test mode")
parser.add_argument("--tie-two-embeddings", dest="tie_two_embeddings", action="store_true",
help="Tie word and char embeddings together")
parser.add_argument("--bigram", dest="bigram", action="store_true", help="Use bigram feature")
options = parser.parse_args()
task_name = options.task_name
root_dir = "{}/{}".format(options.log_dir, task_name)
utils.make_sure_path_exists(root_dir)
def init_logger():
if not os.path.exists(root_dir):
os.mkdir(root_dir)
log_formatter = logging.Formatter("%(message)s")
logger = logging.getLogger()
file_handler = logging.FileHandler("{0}/info.log".format(root_dir), mode='w')
file_handler.setFormatter(log_formatter)
logger.addHandler(file_handler)
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_formatter)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
return logger
# ===-----------------------------------------------------------------------===
# Set up logging
# ===-----------------------------------------------------------------------===
logger = init_logger()
# ===-----------------------------------------------------------------------===
# Log some stuff about this run
# ===-----------------------------------------------------------------------===
logger.info(' '.join(sys.argv))
logger.info('')
logger.info(options)
if options.debug:
print("DEBUG MODE")
options.num_epochs = 2
random.seed(options.python_seed)
np.random.seed(options.python_seed % (2 ** 32 - 1))
logger.info('Python random seed: {}'.format(options.python_seed))
# ===-----------------------------------------------------------------------===
# Read in dataset
# ===-----------------------------------------------------------------------===
dataset = pickle.load(open(options.dataset, "rb"))
w2i = dataset["w2i"]
t2i = dataset["t2i"]
c2i = dataset["c2i"]
i2w = utils.to_id_list(w2i) # Inverse mapping
i2t = utils.to_id_list(t2i)
i2c = utils.to_id_list(c2i)
training_instances = dataset["training_instances"]
training_vocab = dataset["training_vocab"]
dev_instances = dataset["dev_instances"]
dev_vocab = dataset["dev_vocab"]
test_instances = dataset["test_instances"]
if options.debug:
training_instances = training_instances[0:DEBUG_SCALE]
dev_instances = dev_instances[0:DEBUG_SCALE]
test_instances = test_instances[0:DEBUG_SCALE]
if options.subset is not None:
def pick_subset(dataset, subset):
result = []
tag = w2i['<' + subset + '>']
for instance in dataset:
if len(instance.sentence) > 2 and instance.sentence[0] == tag:
result.append(instance)
return result
training_instances = pick_subset(training_instances, options.subset)
dev_instances = pick_subset(dev_instances, options.subset)
test_instances = pick_subset(test_instances, options.subset)
# ===-----------------------------------------------------------------------===
# Build model and trainer
# ===-----------------------------------------------------------------------===
if options.bigram:
def add_word(word):
if word in w2i:
pass
id = len(w2i)
w2i[word] = id
i2w.append(word)
assert len(w2i) == len(i2w)
assert i2w[id] == word
add_word(START_TAG)
add_word(END_TAG)
if options.no_we:
word_embeddings = None
elif options.word_embeddings is not None:
word_embeddings = utils.read_pretrained_embeddings(options.word_embeddings, w2i)
else:
word_embeddings = dataset.get("word_embeddings") # can be stored within dataset
if options.char_embeddings is not None:
char_embeddings = utils.read_pretrained_embeddings(options.char_embeddings, c2i)
else:
char_embeddings = dataset.get("char_embeddings") # can be stored within dataset
# Tie embeddings up
if options.use_char_rnn and word_embeddings is not None and char_embeddings is not None and options.tie_two_embeddings:
for c, i in c2i.items():
if c not in w2i:
wi = len(w2i)
w2i[c] = wi
word_embeddings = np.vstack([word_embeddings, char_embeddings[i]])
c2i = w2i
i2w = utils.to_id_list(w2i) # Inverse mapping
i2c = i2w
bigram_embeddings = None
if options.bigram:
b2i = dict()
def expand_instances(instances):
def id_of_bigram(pre, cur):
bi = (pre, cur)
if bi not in b2i:
b2i[bi] = len(b2i)
return b2i[bi]
for instance in instances:
tuple_list = []
sent = [w2i[START_TAG]] + instance.sentence + [w2i[END_TAG]]
for index, word_id in enumerate(sent):
if index == 0 or index == len(sent) - 1:
continue
tuple_list.append(
(id_of_bigram(sent[index - 1], word_id), word_id, id_of_bigram(word_id, sent[index + 1])))
del instance.sentence[:]
instance.sentence.extend(tuple_list)
expand_instances(training_instances)
expand_instances(dev_instances)
expand_instances(test_instances)
bigram_embeddings = np.random.uniform(-0.8, 0.8, (len(b2i), word_embeddings.shape[1]))
for (pre, cur), id in b2i.items():
bigram_embeddings[id] = (word_embeddings[pre] + word_embeddings[cur]) / 2
tag_set_size = len(t2i)
model = BiLSTM_CRF(tag_set_size,
options.lstm_layers,
options.hidden_dim,
word_embeddings,
options.no_we_update,
options.use_char_rnn,
char_embeddings,
options.char_hidden_dim,
None,
options.lowercase_words,
vocab_size=len(w2i),
charset_size=len(c2i),
tie_two_embeddings=options.tie_two_embeddings
)
best_model_file_name = "{}/model.bin".format(root_dir)
# start training
if not options.test:
if options.old_model:
# incremental training
print("Incremental training from old model: {}".format(options.old_model))
model.load(options.old_model)
trainer = dy.MomentumSGDTrainer(model.model, options.learning_rate, 0.9)
if options.clip_norm:
trainer.set_clip_threshold(options.clip_norm)
logger.info("Training Algorithm: {}".format(type(trainer)))
logger.info("Number training instances: {}".format(len(training_instances)))
logger.info("Number dev instances: {}".format(len(dev_instances)))
training_total_tokens = 0
best_f1 = 0.
for epoch in range(int(options.num_epochs)):
logger.info("Epoch {} out of {}".format(epoch + 1, options.num_epochs))
random.shuffle(training_instances)
train_loss = 0.0
train_total_instance = 0 # size of trained instances
if options.dropout > 0:
model.set_dropout(options.dropout)
nbatches = (len(training_instances) + options.batch_size - 1) // options.batch_size
bar = utils.Progbar(target=nbatches)
for batch_id, batch in enumerate(utils.minibatches(training_instances, options.batch_size)):
for idx, instance in enumerate(batch):
if len(instance.sentence) == 0: continue
train_total_instance += 1
loss_expr = model.neg_log_loss(instance.sentence, instance.tags)
# Forward pass
loss = loss_expr.scalar_value()
# Do backward pass
loss_expr.backward()
# Bail if loss is NaN
if math.isnan(loss):
assert False, "NaN occured"
train_loss += loss
training_total_tokens += len(instance.sentence)
trainer.update()
if options.batch_size == 1 and batch_id % 10 != 0 and batch_id + 1 != train_total_instance:
# online learning, don't print too often
continue
bar.update(batch_id + 1, exact=[("train loss", train_loss / train_total_instance)])
# trainer.update_epoch(1)
# trainer.learning_rate = options.learning_rate / (1 + (epoch + 1) * options.learning_rate_decay)
trainer.learning_rate *= options.learning_rate_decay
# print trainer.learning_rate
train_loss = train_loss / len(training_instances)
# Evaluate dev data
if options.skip_dev:
continue
model.disable_dropout()
dev_loss = 0.0
dev_total_instance = 0
dev_oov_total = 0
total_wrong = 0
total_wrong_oov = 0
# PRF
prf = utils.CWSEvaluator(t2i)
prf_dataset = {}
dev_batch_size = math.ceil(len(dev_instances) * 0.01)
nbatches = (len(dev_instances) + dev_batch_size - 1) // dev_batch_size
bar = utils.Progbar(target=nbatches)
with open("{}/devout-epoch-{:02d}.txt".format(root_dir, epoch + 1), 'w', encoding='utf-8') as dev_writer:
for batch_id, batch in enumerate(utils.minibatches(dev_instances, dev_batch_size)):
for idx, instance in enumerate(batch):
sentence = instance.sentence
if len(sentence) == 0: continue
gold_tags = instance.tags
losses = model.neg_log_loss(sentence, gold_tags)
total_loss = losses.scalar_value()
_, out_tags = model.viterbi_loss(sentence, gold_tags, use_margins=False)
sentence = utils.restore_sentence(sentence)
dataset_name = None
if utils.is_dataset_tag(i2w[sentence[0]]):
dataset_name = i2w[sentence[0]][1:-1]
if dataset_name not in prf_dataset:
prf_dataset[dataset_name] = utils.CWSEvaluator(t2i)
sentence = sentence[1:-1]
gold_tags = gold_tags[1:-1]
out_tags = out_tags[1:-1]
prf_dataset[dataset_name].add_instance(gold_tags, out_tags)
prf.add_instance(gold_tags, out_tags)
gold_strings = utils.to_tag_strings(i2t, gold_tags)
obs_strings = utils.to_tag_strings(i2t, out_tags)
dev_total_instance += 1
dev_loss += total_loss
# output predict raw sentence
sent = [i2w[w][0] for w in sentence]
word_list = utils.bmes_to_words(sent, obs_strings)
raw_sentence_string = ' '.join(word_list)
if dataset_name is not None:
raw_sentence_string = '<{}> {} </{}>'.format(dataset_name, raw_sentence_string, dataset_name)
dev_writer.write(raw_sentence_string)
dev_writer.write('\n')
bar.update(batch_id + 1, exact=[("dev loss", dev_loss / dev_total_instance)])
dev_loss = dev_loss / len(dev_instances)
# logging this epoch
# print prf wrt dataset
for dataset_name, performance in sorted(prf_dataset.items()):
p = performance.result()
logger.info('{}\t{:04.2f}\t{:04.2f}\t{:04.2f}'.format(dataset_name, p[0], p[1], p[2]))
prf = prf.result()
logger.info('{}\t{:04.2f}\t{:04.2f}\t{:04.2f}'.format('AVG', prf[0], prf[1], prf[2]))
if prf[-1] > best_f1:
best_f1 = prf[-1]
logger.info("- new best score!")
# Serialize model
if not options.no_model:
logger.info("Saving model to {}".format(best_model_file_name))
model.save(best_model_file_name)
elif options.always_model:
logger.info("Saving model to {}".format(best_model_file_name))
model.save(best_model_file_name)
# Evaluate test data (once)
logger.info("\n")
logger.info("Number test instances: {}".format(len(test_instances)))
if not options.skip_dev:
if options.test:
model.load(options.old_model)
else:
model.load(best_model_file_name)
model.disable_dropout()
test_correct = 0
test_total_instance = 0
test_oov_total = 0
prf = utils.CWSEvaluator(t2i)
prf_dataset = {}
test_batch_size = math.ceil(len(test_instances) * 0.01)
nbatches = (len(test_instances) + test_batch_size - 1) // test_batch_size
bar = utils.Progbar(target=nbatches)
with open("{}/testout.txt".format(root_dir), 'w', encoding='utf-8') as raw_writer:
for batch_id, batch in enumerate(utils.minibatches(test_instances, test_batch_size)):
for idx, instance in enumerate(batch):
if len(instance.sentence) == 0: continue
sentence = instance.sentence
gold_tags = instance.tags
_, out_tags = model.viterbi_loss(instance.sentence, gold_tags, use_margins=False)
sentence = utils.restore_sentence(sentence)
dataset_name = None
if utils.is_dataset_tag(i2w[sentence[0]]):
dataset_name = i2w[sentence[0]][1:-1]
if dataset_name not in prf_dataset:
prf_dataset[dataset_name] = utils.CWSEvaluator(t2i)
sentence = sentence[1:-1]
gold_tags = gold_tags[1:-1]
out_tags = out_tags[1:-1]
prf_dataset[dataset_name].add_instance(gold_tags, out_tags)
prf.add_instance(gold_tags, out_tags)
gold_strings = utils.to_tag_strings(i2t, gold_tags)
obs_strings = utils.to_tag_strings(i2t, out_tags)
out_tags = out_tags
test_total_instance += 1
sent = [i2w[w][0] for w in sentence]
# output predict raw sentence
word_list = utils.bmes_to_words(sent, obs_strings)
raw_sentence_string = ' '.join(word_list)
if dataset_name is not None:
raw_sentence_string = '<{}> {} </{}>'.format(dataset_name, raw_sentence_string, dataset_name)
raw_writer.write(raw_sentence_string)
raw_writer.write('\n')
bar.update(batch_id + 1, exact=[("f1", prf.result()[-1])])
# print prf wrt dataset
for dataset_name, performance in sorted(prf_dataset.items()):
p = performance.result()
logger.info('{}\t{:04.2f}\t{:04.2f}\t{:04.2f}'.format(dataset_name, p[0], p[1], p[2]))
prf = prf.result()
logger.info('{}\t{:04.2f}\t{:04.2f}\t{:04.2f}'.format('AVG', prf[0], prf[1], prf[2]))