-
Notifications
You must be signed in to change notification settings - Fork 2
/
LOSS.py
55 lines (42 loc) · 1.86 KB
/
LOSS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tensorflow as tf
import numpy as np
def SSIM_LOSS(img1, img2, size = 11, sigma = 1.5):
window = _tf_fspecial_gauss(size, sigma) # window shape [size, size]
K1 = 0.01
K2 = 0.03
L = 1 # depth of image (255 in case the image has a different scale)
C1 = (K1 * L) ** 2
C2 = (K2 * L) ** 2
mu1 = tf.nn.conv2d(img1, window, strides = [1, 1, 1, 1], padding = 'VALID')
mu2 = tf.nn.conv2d(img2, window, strides = [1, 1, 1, 1], padding = 'VALID')
mu1_sq = mu1 * mu1
mu2_sq = mu2 * mu2
mu1_mu2 = mu1 * mu2
sigma1_sq = tf.nn.conv2d(img1 * img1, window, strides = [1, 1, 1, 1], padding = 'VALID') - mu1_sq
sigma2_sq = tf.nn.conv2d(img2 * img2, window, strides = [1, 1, 1, 1], padding = 'VALID') - mu2_sq
sigma12 = tf.nn.conv2d(img1 * img2, window, strides = [1, 1, 1, 1], padding = 'VALID') - mu1_mu2
value = (2.0 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2)
value = tf.reduce_mean(value)
return value
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size // 2 + 1:size // 2 + 1, -size // 2 + 1:size // 2 + 1]
x_data = np.expand_dims(x_data, axis = -1)
x_data = np.expand_dims(x_data, axis = -1)
y_data = np.expand_dims(y_data, axis = -1)
y_data = np.expand_dims(y_data, axis = -1)
x = tf.constant(x_data, dtype = tf.float32)
y = tf.constant(y_data, dtype = tf.float32)
g = tf.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2)))
return g / tf.reduce_sum(g)
def L1_LOSS(batchimg):
L1_norm = tf.reduce_sum(tf.abs(batchimg), axis = [1, 2])
# tf.norm(batchimg, axis = [1, 2], ord = 1) / int(batchimg.shape[1])
E = tf.reduce_mean(L1_norm)
return E
def Fro_LOSS(batchimg):
fro_norm = tf.square(tf.norm(batchimg, axis = [1, 2], ord = 'fro'))
# / (int(batchimg.shape[1]) * int(batchimg.shape[2]))
E = tf.reduce_mean(fro_norm)
return E