-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
169 lines (133 loc) · 6.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import argparse
import torch
from torch.utils.data import random_split, DataLoader
from tqdm import tqdm
from config import Config
from vocab import Vocab
from load_dataset import Flicker30k, preprocess_image, Padding
from model import Encoder, DecoderLSTM, DecoderGPT1
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='lstm', choices=['lstm', 'gpt1'])
args = parser.parse_args()
config = Config()
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
# load vocabulary
vocab = Vocab()
vocab.load_vocab(config.vocab_file)
# load dataset
print('---Loading dataset---')
dataset = Flicker30k(config.image_dir, config.caption_file, vocab, preprocess_image())
train_size = int(config.train_size * len(dataset))
val_size = len(dataset) - train_size
collate_fn = Padding(pad_index=vocab.word2index[vocab.pad])
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(dataset=train_dataset, batch_size=config.batch, shuffle=True, collate_fn=collate_fn)
val_loader = DataLoader(dataset=val_dataset, batch_size=config.batch, shuffle=False, collate_fn=collate_fn)
# create model
print('---Initializing model---')
encoder = Encoder(word_emb_dim=config.word_emb_dim).to(config.device)
emb_layer = torch.nn.Embedding(num_embeddings=config.vocab_size,
embedding_dim=config.word_emb_dim,
padding_idx=vocab.word2index[vocab.pad]).to(config.device)
if args.model == 'lstm':
decoder = DecoderLSTM(word_emb_dim=config.word_emb_dim,
hidden_dim=config.hidden_dim,
num_layers=config.num_lstm_layers,
vocab_size=config.vocab_size).to(config.device)
else:
decoder = DecoderGPT1(word_emb_dim=config.word_emb_dim,
nhead=config.n_head,
hidden_dim=config.hidden_dim,
num_layers=config.num_gpt1_layers,
vocab_size=config.vocab_size).to(config.device)
criterion = torch.nn.CrossEntropyLoss().to(config.device)
parameters = list(encoder.parameters()) + list(emb_layer.parameters()) + list(decoder.parameters())
optimizer = torch.optim.Adam(params=parameters, lr=config.lr_lstm if args.model == 'lstm' else config.lr_gpt1)
# training
print('---Training---')
if not os.path.exists('./src'):
os.mkdir('./src')
for epoch in range(config.epoch):
print('# train epoch', epoch)
for i, batch in enumerate(tqdm(train_loader)):
encoder.train()
emb_layer.train()
decoder.train()
image_batch, caption_batch = batch[0].to(config.device), batch[1].to(config.device)
caption_emb = emb_layer(caption_batch).permute(1, 0, 2)
# caption_emb: (caption_length, batch, word_emb_dim)
seq_length = caption_emb.shape[0]
batch_size = caption_emb.shape[1]
# get image embedding
image_emb = encoder(image_batch).unsqueeze(0)
# image_emb: (1, batch, word_emb_dim)
# feed decoder
decoder_input = torch.cat([image_emb, caption_emb], dim=0)
if args.model == 'lstm':
hidden = decoder.hidden_0.repeat(1, batch_size, 1)
cell = decoder.cell_0.repeat(1, batch_size, 1)
# (num_layers, batch, hidden_dim)
# prepare output and target
output, _ = decoder(decoder_input, hidden, cell)
# output: (caption_length + 1, batch, vocab_size)
else:
output = decoder(decoder_input)
# output: (caption_length + 1, batch, vocab_size)
output = output[1:-1, :, :].view(-1, config.vocab_size)
targets = caption_batch.permute(1, 0)[1:, :].reshape(-1)
mask = targets != vocab.word2index[vocab.pad]
# only compare non-pad tokens
output = output[mask, :]
targets = targets[mask]
loss = criterion(output, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.cuda.empty_cache()
print('# evaluate')
acc = []
for i, batch in enumerate(tqdm(val_loader)):
encoder.eval()
emb_layer.eval()
decoder.eval()
with torch.no_grad():
image_batch, caption_batch = batch[0].to(config.device), batch[1].to(config.device)
caption_emb = emb_layer(caption_batch).permute(1, 0, 2)
# caption_emb: (caption_length, batch, word_emb_dim)
seq_length = caption_emb.shape[0]
batch_size = caption_emb.shape[1]
# get image embedding
image_emb = encoder(image_batch).unsqueeze(0)
# image_emb: (1, batch, word_emb_dim)
# feed decoder
decoder_input = torch.cat([image_emb, caption_emb], dim=0)
if args.model == 'lstm':
hidden = decoder.hidden_0.repeat(1, batch_size, 1)
cell = decoder.cell_0.repeat(1, batch_size, 1)
# (num_layers, batch, hidden_dim)
# prepare output and target
output, _ = decoder(decoder_input, hidden, cell)
# output: (caption_length + 1, batch, vocab_size)
else:
output = decoder(decoder_input)
# output: (caption_length + 1, batch, vocab_size)
output = output[1:-1, :, :].view(-1, config.vocab_size)
targets = caption_batch.permute(1, 0)[1:, :].reshape(-1)
mask = targets != vocab.word2index[vocab.pad]
# only compare non-pad tokens
output = output[mask, :]
targets = targets[mask]
probs = torch.exp(output)
acc_batch = (probs.max(dim=-1)[1] == targets).float().mean()
acc.append(acc_batch.item())
print('Accuracy: ', sum(acc) / len(acc))
if args.model == 'lstm':
torch.save(encoder.state_dict(), config.encoder_lstm_file)
torch.save(emb_layer.state_dict(), config.embedding_lstm_file)
torch.save(decoder.state_dict(), config.decoder_lstm_file)
else:
torch.save(encoder.state_dict(), config.encoder_gpt1_file)
torch.save(emb_layer.state_dict(), config.embedding_gpt1_file)
torch.save(decoder.state_dict(), config.decoder_gpt1_file)