forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.tex
4287 lines (4058 loc) · 110 KB
/
models.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Semistable Reduction}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we prove the semistable reduction theorem for curves.
We will use the method of Artin and Winters from their paper
\cite{Artin-Winters}.
\medskip\noindent
It turns out that one can prove the semistable reduction theorem
for curves without any results on desingularization. Namely, there
is a way to esthablish the existence and projectivity of moduli
of semistable curves using Geometric Invariant Theory (GIT)
as developped by Mumford, see \cite{GIT}. This method was
championed by Gieseker who proved the full result in his
lecture notes \cite{Gieseker}. This is quite an amazing
feat: it seems somewhat counter intuitive that one can
prove such a result without ever truly studying families curves over
a positive dimensional base.
\medskip\noindent
Historically the first proof of the semistable reduction theorem
for curves can be found in the paper \cite{DM} by Deligne and Mumford.
It proves the theorem by reducing the problem to the case of
Abelian varieties which was already known at the time thanks
to Grothendieck and others, see \cite{SGA7-I} and \cite{SGA7-II}).
In hindsight the semistable reduction theorem for abelian varieties seems
a lot harder, {\it especially} if one is to prove it without access
to the semistable reduction theorem for curves.
\medskip\noindent
The method in the paper by Artin and Winters consists in analyzing the
possibilities for the special fibre and concluding using an inequality
for torsion in the Picard group of a $1$-dimensional scheme over a field.
A similar argument can be found in a paper \cite{Saito} of Saito who uses
\'etale cohomology directly and who obtains a stronger result in that
he can characterize semistable reduction in terms of the action of
the inertia on $\ell$-adic \'etale cohomology.
\medskip\noindent
A different approach one can use to prove the theorem is to use
rigid analytic geometry techniques. Here we refer the reader to
\cite{vanderPut} and \cite{Arzdorf-Wewers}.
\medskip\noindent
The paper \cite{Temkin} by Temkin uses valuation theoretic techniques
(and proves a lot more besides); also Appendix A of this paper gives
a nice overview of the different proofs and the relationship with
desingularizations of $2$ dimensional schemes.
\medskip\noindent
Another overview paper that the reader may wish to consult is
\cite{Abbes-ssr} written by Ahmed Abbes.
\section{Linear algebra}
\label{section-linear-algebra}
\noindent
A couple of lemmas we will use later on.
\begin{lemma}
\label{lemma-recurring}
\begin{reference}
\cite[Theorem I]{Taussky}
\end{reference}
Let $A = (a_{ij})$ be a complex $n \times n$ matrix.
\begin{enumerate}
\item If $|a_{ii}| > \sum_{j \not = i} |a_{ij}|$ for each $i$, then
$\det(A)$ is nonzero.
\item If there exists a real vector $m = (m_1, \ldots, m_n)$
with $m_i > 0$ such that $|a_{ii} m_i| > \sum_{j \not = i} |a_{ij}m_j|$
for each $i$, then $\det(A)$ is nonzero.
\end{enumerate}
\end{lemma}
\begin{proof}
If $A$ is as in (1) and $\det(A) = 0$, then there is a nonzero vector
$z$ with $Az = 0$. Choose $r$ with $|z_r|$ maximal. Then
$$
|a_{rr} z_r| = |\sum\nolimits_{k \not = r} a_{rk}z_k| \leq
\sum\nolimits_{k \not = r} |a_{rk}||z_k| \leq
|z_r| \sum\nolimits_{k \not = r} |a_{rk}| < |a_{rr}||z_r|
$$
which is a contradiction. To prove (2) apply (1) to the matrix
$(a_{ij}m_j)$ whose determinant is $m_1 \ldots m_n \det(A)$.
\end{proof}
\begin{lemma}
\label{lemma-recurring-real}
Let $A = (a_{ij})$ be a real $n \times n$ matrix with
$a_{ij} \geq 0$ for $i \not = j$. Let $m = (m_1, \ldots, m_n)$ be a real
vector with $m_i > 0$. For $I \subset \{1, \ldots, n\}$ let
$x_I \in \mathbf{R}^n$
be the vector whose $i$th coordinate is $m_i$ if $i \in I$
and $0$ otherwise. If
\begin{equation}
\label{equation-ineq}
-a_{ii}m_i \geq \sum\nolimits_{j \not = i} a_{ij}m_j
\end{equation}
for each $i$, then $\Ker(A)$ is the vector space
spanned by the vectors $x_I$ such that
\begin{enumerate}
\item $a_{ij} = 0$ for $i \in I$, $j \not \in I$, and
\item equality holds in (\ref{equation-ineq}) for $i \in I$.
\end{enumerate}
\end{lemma}
\begin{proof}
After replacing $a_{ij}$ by $a_{ij}m_j$ we may assume $m_i = 1$ for all $i$.
If $I \subset \{1, \ldots, n\}$ such that (1) and (2) are true,
then a simple computation shows that $x_I$ is in the kernel of $A$.
Conversely, let $x = (x_1, \ldots, x_n) \in \mathbf{R}^n$ be a
nonzero vector in the kernel of $A$. We will show by induction
on the number of nonzero coordinates of $x$ that $x$ is in the
span of the vectors $x_I$ satisfying (1) and (2). Let
$I \subset \{1, \ldots, n\}$ be the set of indices $r$ with $|x_r|$ maximal.
For $r \in I$ we have
$$
|a_{rr} x_r| = |\sum\nolimits_{k \not = r} a_{rk}x_k| \leq
\sum\nolimits_{k \not = r} a_{rk}|x_k| \leq
|x_r| \sum\nolimits_{k \not = r} a_{rk} \leq |a_{rr}||x_r|
$$
Thus equality holds everywhere. In particular, we see that
$a_{rk} = 0$ if $r \in I$, $k \not \in I$ and equality holds
in (\ref{equation-ineq}) for $r \in I$. Then we see that we
can substract a suitable multiple of $x_I$ from $x$ to decrease
the number of nonzero coordinates.
\end{proof}
\begin{lemma}
\label{lemma-recurring-symmetric-real}
Let $A = (a_{ij})$ be a symmetric real $n \times n$ matrix with
$a_{ij} \geq 0$ for $i \not = j$.
Let $m = (m_1, \ldots, m_n)$ be a real vector with $m_i > 0$.
Assume
\begin{enumerate}
\item $Am = 0$,
\item there is no proper nonempty subset $I \subset \{1, \ldots, n\}$
such that $a_{ij} = 0$ for $i \in I$ and $j \not \in I$.
\end{enumerate}
Then $x^t A x \leq 0$ with equality if and only if $x = qm$
for some $q \in \mathbf{R}$.
\end{lemma}
\begin{proof}[First proof]
After replacing $a_{ij}$ by $a_{ij}m_im_j$ we may assume $m_i = 1$
for all $i$. Condition (1) means $-a_{ii} = \sum_{j \not = i} a_{ij}$
for all $i$. Recall that $x^tAx = \sum_{i, j} x_ia_{ij}x_j$.
Then
\begin{align*}
\sum\nolimits_{i \not = j} -a_{ij}(x_j - x_i)^2 & =
\sum\nolimits_{i \not = j} -a_{ij}x_j^2 + 2a_{ij}x_ix_i - a_{ij}x_i^2 \\
& =
\sum\nolimits_j a_{jj} x_j^2 +
\sum\nolimits_{i \not = j} 2a_{ij}x_ix_i +
\sum\nolimits_j a_{jj} x_i^2 \\
& = 2x^tAx
\end{align*}
This is clearly $\leq 0$. If equality holds, then let $I$ be the set
of indices $i$ with $x_i \not = x_1$. Then $a_{ij} = 0$ for $i \in I$
and $j \not \in I$. Thus $I = \{1, \ldots, n\}$ by condition (2) and
$x$ is a multiple of $m = (1, \ldots, 1)$.
\end{proof}
\begin{proof}[Second proof]
The matrix $A$ has real eigenvalues by the spectral theorem.
We claim all the eigenvalues are $\leq 0$.
Namely, since property (1) means
$-a_{ii}m_i = \sum_{j \not = i} a_{ij}m_j$ for all $i$,
we find that the matrix $A' = A - \lambda I$ for $\lambda > 0$
satisfies $|a'_{ii}m_i| > \sum a'_{ij}m_j = \sum |a'_{ij}m_j|$ for all $i$.
Hence $A'$ is invertible by Lemma \ref{lemma-recurring}.
This implies that the symmetric bilinear form $x^tAy$
is semi-negative definite, i.e., $x^tAx \leq 0$ for all $x$.
It follows that the kernel of $A$ is equal
to the set of vectors $x$ with $x^tAx = 0$.
The description of the kernel in Lemma \ref{lemma-recurring-real}
gives the final statement of the lemma.
\end{proof}
\section{Numerical types}
\label{section-numerical-types}
\noindent
Part of the arguments will involve the combinatorics of the following
data structures.
\begin{definition}
\label{definition-type}
A {\it numerical type of genus $g$} is given by
$$
n, m_i, a_{ij}, w_i, g_i
$$
where $n \geq 1$ is an integer and $m_i$, $a_{ij}$, $w_i$, $g_i$
are integers for $1 \leq i, j \leq n$ subject to the following conditions
\begin{enumerate}
\item $m_i > 0$, $w_i > 0$, $g_i \geq 0$,
\item the matrix $A = (a_{ij})$ is symmetric and $a_{ij} \geq 0$
for $j \not = i$,
\item there is no proper nonempty subset $I \subset \{1, \ldots, n\}$
such that $a_{ij} = 0$ for $i \in I$, $j \not \in I$,
\item for each $i$ we have $\sum_j a_{ij}m_j = 0$,
\item $w_i | a_{ij}$, and
\item $g = 1 + \sum m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})$.
\end{enumerate}
\end{definition}
\noindent
This is obviously a somewhat annoying type of structure to work with,
but it is exactly what shows up in special fibres of proper regular
models of smooth geometrically connected curves of genus $g$.
Of course we only care about these types up to reordering the indices.
\begin{definition}
\label{definition-type-equivalent}
We say two numerical types $n, m_i, a_{ij}, w_i, g_i$ and
$n', m'_i, a'_{ij}, w'_i, g'_i$ are {\it equivalent types} if
there exists a permutation $\sigma$ of $\{1, \ldots, n\}$
such that $m_i = m'_{\sigma(i)}$, $a_{ij} = a'_{\sigma(i)\sigma(j)}$,
$w_i = w'_{\sigma(i)}$, and $g_i = g'_{\sigma(i)}$.
\end{definition}
\noindent
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type of genus $g$.
The first observation we make is that
\begin{equation}
\label{equation-irreducible}
n = 1 \Rightarrow
\left(a_{11} = 0\text{ and }g = 1 + m_1w_1(g_1 - 1)\right)
\end{equation}
If $g = 0$, then this implies $m_1 = 1$, $w_1 = 1$, $g_1 = 0$;
this is case (1) of Lemma \ref{lemma-genus-zero}.
If $g = 1$, then we conclude $g_1 = 1$ but $m_1, w_1$ can be arbitrary
positive integers; this is case
(\ref{item-one}) of Lemma \ref{lemma-genus-one}.
If $g > 1$, then this implies there are finitely many possible
numerical types of genus $g$ with $n = 1$.
\medskip\noindent
From now on assume $n > 1$. Note that
Lemma \ref{lemma-recurring-symmetric-real}
applies to the matrix $A$. Hence we see that
\begin{equation}
\label{equation-diagonal-negative}
a_{ii} < 0.
\end{equation}
From (\ref{equation-diagonal-negative}) and $w_i > 0$, $g_i \geq 0$,
and $w_i | a_{ii}$ it follows that
\begin{equation}
\label{equation-minus-one}
w_i(g_i - 1) - \frac{1}{2} a_{ii} < 0 \Rightarrow
\left(g_i = 0 \text{ and } a_{ii} = -w_i\right).
\end{equation}
In other words, if there is no index $i$ with $g_i = 0$ and
$a_{ii} = -w_i$, then the contributions
$m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})$
to the genus $g$ are all $\geq 0$.
This suggests the following definition.
\begin{definition}
\label{definition-type-minimal}
We say the numerical type $n, m_i, a_{ij}, w_i, g_i$ of genus $g$
is {\it minimal} if there does not exist an $i$
with $g_i = 0$ and $a_{ii} = -w_i$.
\end{definition}
\noindent
Thus we can reformulate our discovery above as follows:
If our numerical type is minimal, then the contributions
$m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})$
to the genus $g$ are all $\geq 0$.
In particular any minimal numerical type of genus $0$
has $n = 1$; this proves Lemma \ref{lemma-genus-zero}.
Using the same argument as above we see that
\begin{equation}
\label{equation-minus-two}
w_i(g_i - 1) - \frac{1}{2} a_{ii} = 0
\Rightarrow
\left(g_i = 0 \text{ and } a_{ii} = -2w_i\right).
\end{equation}
It turns out that the indices satisfying this relation
play an important role in the structure of minimal numerical types.
Hence we give them a name.
\begin{definition}
\label{definition-type-minus-two}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type of genus $g$.
We say $i$ is a {\it $(-2)$-index} if $g_i = 0$ and $a_{ii} = -2w_i$.
\end{definition}
\noindent
Thus in a minimal numerical type of genus $g$, the $(-2)$-indices
are exactly the indices which do not contribute a postive number
to the genus in the formula
$$
g = 1 + \sum m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})
$$
Thus it will be somewhat tricky to bound the quantities associated
with $(-2)$-indices as we will see later.
\section{Classification of proper subgraphs}
\label{section-classify-proper-subgraphs}
\noindent
In this section we assume given a numerical type
$n, m_i, a_{ij}, w_i, g_i$ of genus $g$. We will find
a complete list of possible ``subgraphs'' consisting entirely
of $(-2)$-indices (as defined in the previous section).
At the same time we classify all possible minimal numerical
types of genus $1$.
\medskip\noindent
Suppose that $i$ and $j$ are $(-2)$-indices with $a_{ij} > 0$.
Since the matrix $A = (a_{ij})$ is semi-negative definite by
Lemma \ref{lemma-recurring-symmetric-real} we see that the matrix
$$
\left(
\begin{matrix}
-2w_i & a_{ij} \\
a_{ij} & -2w_j
\end{matrix}
\right)
$$
is negative definite unless $n = 2$. The case $n = 2$ can happen: then
the determinant $4w_1w_2 - a_{12}^2$ is zero. Using that
$\text{lcm}(w_1, w_2)$ divides $a_{12}$ the reader easily finds
that the only possibilities are
$$
(w_1, w_2, a_{12}) = (w, w, 2w), (w, 4w, 4w), \text{ or }(4w, w, 4w)
$$
Observe that the case $(4w, w, 4w)$ is obtained from the case
$(w, 4w, 4w)$ by switching the indices $i, j$.
In these cases $g = 1$. This leads to cases
(\ref{item-two-cycle}) and (\ref{item-up4}) of Lemma \ref{lemma-genus-one}.
Assuming $n > 2$ we see
that the determinant $4w_iw_j - a_{ij}^2$ of the displayed matrix
is $> 0$ and we conclude that $a_{ij}^2/w_iw_j < 4$.
On the other hand, we know that $\text{lcm}(w_i, w_j) | a_{ij}$
and hence $a_{ij}^2/w_iw_j$ is an integer.
Thus $a_{ij}^2/w_iw_j \in \{1, 2, 3\}$ and $w_i | w_j$ or
vice versa. This leads to the following possibilites
$$
(w_1, w_2, a_{12}) = (w, w, w), (w, 2w, 2w), (w, 3w, 3w),
(2w, w, 2w), \text{ or }(3w, w, 3w)
$$
Observe that the case $(2w, w, 2w)$ is obtained from the case
$(w, 2w, 2w)$ by switching the indices $i, j$ and similarly
for the cases $(3w, w, 3w)$ and $(w, 3w, 3w)$. The first three
solutions lead to cases (\ref{item-A2}), (\ref{item-B2}), and
(\ref{item-G2}) of Lemma \ref{lemma-two-by-two}. In this lemma
we wrote out the consequences for the integers $m_i$ and $m_j$
using that $\sum_l a_{kl}m_l = 0$ for each $k$ in particular implies
$a_{ii}m_i + a_{ij}m_j \leq 0$ for $k = i$ and
$a_{ij}m_i + a_{jj}m_j \leq 0$ for $k = j$.
\begin{lemma}
\label{lemma-two-by-two}
Classification of proper subgraphs of the form
$$
\xymatrix{
\bullet \ar@{-}[r] & \bullet
}
$$
If $n > 2$, then given a pair $i, j$ of $(-2)$-indices with $a_{ij} > 0$,
then up to ordering we have the $m$'s, $a$'s, $w$'s
\begin{enumerate}
\item
\label{item-A2}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & w \\
w & -2w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
w
\end{matrix}
\right)
$$
with $w$ arbitrary and $2m_1 \geq m_2$ and $2m_2 \geq m_1$, or
\item
\label{item-B2}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & 2w \\
2w & -4w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
2w
\end{matrix}
\right)
$$
with $w$ arbitrary and $m_1 \geq m_2$ and $2m_2 \geq m_1$, or
\item
\label{item-G2}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & 3w \\
3w & -6w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
3w
\end{matrix}
\right)
$$
with $w$ arbitrary and $2m_1 \geq 3m_2$ and $2m_2 \geq m_1$.
\end{enumerate}
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\noindent
Suppose that $i$, $j$, and $k$ are three $(-2)$-indices with $a_{ij} > 0$
and $a_{jk} > 0$. In other words, the index $i$ ``meets'' $j$ and
$j$ ``meets'' $k$. We will use without further mention that each pair
$(i, j)$, $(i, k)$, and $(j, k)$ is as listed in Lemma \ref{lemma-two-by-two}.
Since the matrix $A = (a_{ij})$ is semi-negative
definite by Lemma \ref{lemma-recurring-symmetric-real} we see that the matrix
$$
\left(
\begin{matrix}
-2w_i & a_{ij} & a_{ik} \\
a_{ij} & -2w_j & a_{jk} \\
a_{ik} & a_{jk} & -2w_k
\end{matrix}
\right)
$$
is negative definite unless $n = 3$. The case $n = 3$ can happen:
then the determinant\footnote{It is
$-8w_iw_jw_k + 2a_{ij}^2w_k + 2a_{jk}^2w_i + 2a_{ik}^2w_j +
2a_{ij}a_{jk}a_{ik}$.} of the matrix is zero
and we obtain the equation
$$
4 = \frac{a_{ij}^2}{w_iw_j} +
\frac{a_{jk}^2}{w_jw_k} +
\frac{a_{ik}^2}{w_iw_k} +
\frac{a_{ij}a_{ik}a_{jk}}{w_iw_jw_k}
$$
of integers. The last term on the right in this equation is determined
by the others because
$$
\left(\frac{a_{ij}a_{ik}a_{jk}}{w_iw_jw_k}\right)^2 =
\frac{a_{ij}^2}{w_iw_j} \frac{a_{jk}^2}{w_jw_k} \frac{a_{ik}^2}{w_iw_k}
$$
Since we have seen above that
$\frac{a_{ij}^2}{w_iw_j}, \frac{a_{jk}^2}{w_jw_k}$ are in
$\{1, 2, 3\}$ and $\frac{a_{ik}^2}{w_iw_k}$ in $\{0, 1, 2, 3\}$,
we conclude that the only possibilities are
$$
(\frac{a_{ij}^2}{w_iw_j}, \frac{a_{jk}^2}{w_jw_k}, \frac{a_{ik}^2}{w_iw_k}) =
(1, 1, 1), (1, 3, 0), (2, 2, 0),\text{ or } (3, 1, 0)
$$
Observe that the case $(3, 1, 0)$ is obtained from the case $(1, 3, 0)$
by reversing the order the indices $i, j, k$.
In each of these cases $g = 1$; the reader can find these as cases
(\ref{item-three-cycle}), (\ref{item-equal-up3}), (\ref{item-equal-down3}),
(\ref{item-up-up}), (\ref{item-up-down}), (\ref{item-down-up}) of
Lemma \ref{lemma-genus-one}
with one case corresponding to $(1, 1, 1)$,
two cases corresponding to $(1, 3, 0)$, and
three cases corresponding to $(2, 2, 0)$.
Assuming $n > 3$
we obtain the inequality
$$
4 > \frac{a_{ij}^2}{w_iw_j} + \frac{a_{ik}^2}{w_iw_k} +
\frac{a_{jk}^2}{w_jw_k} + \frac{a_{ij}a_{ik}a_{jk}}{w_iw_jw_k}
$$
of integers. Using the restrictions on the numbers given above
we see that the only possibilities are
$$
(\frac{a_{ij}^2}{w_iw_j}, \frac{a_{jk}^2}{w_jw_k}, \frac{a_{ik}^2}{w_iw_k}) =
(1, 1, 0), (1, 2, 0),\text{ or }(2, 1, 0)
$$
in particular $a_{ik} = 0$ (recall we are assuming
$a_{ij} > 0$ and $a_{jk} > 0$). Observe that the case
$(2, 1, 0)$ is obtained from the case $(1, 2, 0)$ by reversing
the ordering of the indices $i, j, k$. The first two solutions lead
to cases (\ref{item-A3}), (\ref{item-C3}), and (\ref{item-B3})
of Lemma \ref{lemma-three-by-three} where we also wrote out the consequences
for the integers $m_i$, $m_j$, and $m_k$.
\begin{lemma}
\label{lemma-three-by-three}
Classification of proper subgraphs of the form
$$
\xymatrix{
\bullet \ar@{-}[r] &
\bullet \ar@{-}[r] &
\bullet
}
$$
If $n > 3$, then given a triple $i, j, k$ of $(-2)$-indices
with at least two $a_{ij}, a_{ik}, a_{jk}$ nonzero, then up
to ordering we have the $m$'s, $a$'s, $w$'s
\begin{enumerate}
\item
\label{item-A3}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & w & 0 \\
w & -2w & w \\
0 & w & -2w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
w \\
w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2$, $2m_2 \geq m_1 + m_3$, $2m_3 \geq m_2$, or
\item
\label{item-C3}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & w & 0 \\
w & -2w & 2w \\
0 & 2w & -4w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
w \\
2w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2$, $2m_2 \geq m_1 + 2m_3$, $2m_3 \geq m_2$, or
\item
\label{item-B3}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-4w & 2w & 0 \\
2w & -4w & 2w \\
0 & 2w & -2w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
2w \\
2w \\
w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2$, $2m_2 \geq m_1 + m_3$, $m_3 \geq m_2$.
\end{enumerate}
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\noindent
Suppose that $i$, $j$, $k$, and $l$ are four $(-2)$-indices with
$a_{ij} > 0$, $a_{jk} > 0$, and $a_{kl} > 0$. In other words, the
index $i$ ``meets'' $j$, $j$ ``meets'' $k$, and $k$ ``meets'' $l$.
Then we see from Lemma \ref{lemma-three-by-three} that $a_{ik} = a_{jl} = 0$.
Since the matrix $A = (a_{ij})$ is semi-negative definite we see that the
matrix
$$
\left(
\begin{matrix}
-2w_i & a_{ij} & 0 & a_{il} \\
a_{ij} & -2w_j & a_{jk} & 0 \\
0 & a_{jk} & -2w_k & a_{kl} \\
a_{il} & 0 & a_{kl} & -2w_l
\end{matrix}
\right)
$$
is negative definite unless $n = 4$. The case $n = 4$ can happen:
then the determinant\footnote{It is
$16w_iw_jw_kw_l - 4a_{ij}^2w_kw_l - 4a_{jk}^2w_iw_l - 4a_{kl}^2w_iw_j -
4a_{il}^2w_jw_k + a_{ij}^2a_{kl}^2 + a_{jk}^2a_{il}^2 -
2a_{ij}a_{il}a_{jk}a_{kl}$.} of the matrix is zero and we obtain the equation
$$
16 +
\frac{a_{ij}^2}{w_iw_j}\frac{a_{kl}^2}{w_kw_l} +
\frac{a_{jk}^2}{w_jw_k}\frac{a_{il}^2}{w_iw_l} =
4\frac{a_{ij}^2}{w_iw_j} + 4\frac{a_{jk}^2}{w_jw_k} + 4\frac{a_{kl}^2}{w_kw_l}
+ 4\frac{a_{il}^2}{w_iw_l} + 2\frac{a_{ij}a_{il}a_{jk}a_{kl}}{w_iw_jw_kw_l}
$$
of nonnegative integers. The last term on the right in this equation is
determined by the others because
$$
\left(\frac{a_{ij}a_{il}a_{jk}a_{kl}}{w_iw_jw_kw_l}\right)^2 =
\frac{a_{ij}^2}{w_iw_j} \frac{a_{jk}^2}{w_jw_k}
\frac{a_{kl}^2}{w_kw_l} \frac{a_{il}^2}{w_iw_l}
$$
Since we have seen above that
$\frac{a_{ij}^2}{w_iw_j}, \frac{a_{jk}^2}{w_jw_k}, \frac{a_{kl}^2}{w_kw_l}$
are in $\{1, 2\}$ and $\frac{a_{il}^2}{w_iw_l}$ in $\{0, 1, 2\}$,
we conclude that the only possible solutions are
$$
(\frac{a_{ij}^2}{w_iw_j}, \frac{a_{jk}^2}{w_jw_k}, \frac{a_{kl}^2}{w_kw_l},
\frac{a_{il}^2}{w_iw_l}) =
(1, 1, 1, 1) \text{ or } (2, 1, 2, 0)
$$
and case $g = 1$; the reader can find these as cases
(\ref{item-four-cycle}), (\ref{item-up-equal-up}),
(\ref{item-up-equal-down}), and (\ref{item-down-equal-up})
of Lemma \ref{lemma-genus-one}. Assuming $n > 4$
we obtain the inequality
$$
16 +
\frac{a_{ij}^2}{w_iw_j}\frac{a_{kl}^2}{w_kw_l} +
\frac{a_{jk}^2}{w_jw_k}\frac{a_{il}^2}{w_iw_l} >
4\frac{a_{ij}^2}{w_iw_j} + 4\frac{a_{jk}^2}{w_jw_k} + 4\frac{a_{kl}^2}{w_kw_l}
+ 4\frac{a_{il}^2}{w_iw_l} + 2\frac{a_{ij}a_{il}a_{jk}a_{kl}}{w_iw_jw_kw_l}
$$
of nonnegative integers. Using the restrictions on the numbers given above
we see that the only possibilities are
$$
(\frac{a_{ij}^2}{w_iw_j}, \frac{a_{jk}^2}{w_jw_k}, \frac{a_{kl}^2}{w_kw_l},
\frac{a_{il}^2}{w_iw_l}) =
(1, 1, 1, 0), (1, 1, 2, 0), (1, 2, 1, 0), \text{ or }(2, 1, 1, 0)
$$
in particular $a_{il} = 0$ (recall that we assumed the other three
to be nonzero). Observe that the case $(2, 1, 1, 0)$ is obtained
from the case $(1, 1, 2, 0)$ by reversing the ordering
of the indices $i, j, k, l$. The first three solutions lead
to cases (\ref{item-A4}), (\ref{item-C4}), (\ref{item-B4}), and
(\ref{item-F4}) of Lemma \ref{lemma-four-by-four}
where we also wrote out the consequences for the integers $m_i$, $m_j$, $m_k$,
and $m_l$.
\begin{lemma}
\label{lemma-four-by-four}
Classification of proper subgraphs of the form
$$
\xymatrix{
\bullet \ar@{-}[r] &
\bullet \ar@{-}[r] &
\bullet \ar@{-}[r] &
\bullet
}
$$
If $n > 4$, then given four $(-2)$-indices $i, j, k, l$
with $a_{ij}, a_{jk}, a_{kl}$ nonzero, then up
to ordering we have the $m$'s, $a$'s, $w$'s
\begin{enumerate}
\item
\label{item-A4}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3 \\
m_4
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & w & 0 & 0 \\
w & -2w & w & 0 \\
0 & w & -2w & w \\
0 & 0 & w & -2w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
w \\
w \\
w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2$, $2m_2 \geq m_1 + m_3$, $2m_3 \geq m_2 + m_4$,
and $2m_4 \geq m_3$, or
\item
\label{item-C4}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3 \\
m_4
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & w & 0 & 0 \\
w & -2w & w & 0 \\
0 & w & -2w & 2w \\
0 & 0 & 2w & -4w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
w \\
w \\
2w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2$, $2m_2 \geq m_1 + m_3$, $2m_3 \geq m_2 + 2m_4$,
and $2m_4 \geq m_3$, or
\item
\label{item-B4}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3 \\
m_4
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-4w & 2w & 0 & 0 \\
2w & -4w & 2w & 0 \\
0 & 2w & -4w & 2w \\
0 & 0 & 2w & -2w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
2w \\
2w \\
2w \\
w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2$, $2m_2 \geq m_1 + m_3$, $2m_3 \geq m_2 + m_4$,
and $m_4 \geq m_3$, or
\item
\label{item-F4}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3 \\
m_4
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & w & 0 & 0 \\
w & -2w & 2w & 0 \\
0 & 2w & -4w & 2w \\
0 & 0 & 2w & -4w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
w \\
2w \\
2w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2$, $2m_2 \geq m_1 + 2m_3$, $2m_3 \geq m_2 + m_4$,
and $2m_4 \geq m_3$.
\end{enumerate}
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\noindent
Suppose that $i$, $j$, $k$,
and $l$ are four $(-2)$-indices with $a_{ij} > 0$, $a_{ij} > 0$, and
$a_{il} > 0$. In other words, the index $i$ ``meets'' the indices
$j$, $k$, $l$. Then we see from Lemma \ref{lemma-three-by-three} that
$a_{jk} = a_{jl} = a_{kl} = 0$. Since the matrix $A = (a_{ij})$ is
semi-negative definite we see that the matrix
$$
\left(
\begin{matrix}
-2w_i & a_{ij} & a_{ik} & a_{il} \\
a_{ij} & -2w_j & 0 & 0 \\
a_{ik} & 0 & -2w_k & 0 \\
a_{il} & 0 & 0 & -2w_l
\end{matrix}
\right)
$$
is negative definite unless $n = 4$. The case $n = 4$ can happen:
then the determinant\footnote{It is
$16w_iw_jw_kw_l - 4a_{ij}^2w_kw_l - 4a_{ik}^2w_jw_l - 4a_{il}^2w_jw_k$.}
of the matrix is zero and we obtain the equation
$$
4 = \frac{a_{ij}^2}{w_iw_j} + \frac{a_{ik}^2}{w_iw_k} + \frac{a_{il}^2}{w_jw_l}
$$
of nonnegative integers. Since we have seen above that
$\frac{a_{ij}^2}{w_iw_j}, \frac{a_{ik}^2}{w_iw_k}, \frac{a_{il}^2}{w_iw_l}$
are in $\{1, 2\}$, we conclude that the only possibilities
are up to reordering: $4 = 1 + 1 + 2$. In each of these
cases $g = 1$; the reader can find these as cases
(\ref{item-triple-with-up}) and (\ref{item-triple-with-down}) of
Lemma \ref{lemma-genus-one}. Assuming $n > 4$
we obtain the inequality
$$
4 > \frac{a_{ij}^2}{w_iw_j} + \frac{a_{ik}^2}{w_iw_k} + \frac{a_{il}^2}{w_jw_l}
$$
of nonnegative integers. This implies that $\frac{a_{ij}^2}{w_iw_j} =
\frac{a_{ik}^2}{w_iw_k} = \frac{a_{il}^2}{w_jw_l} = 1$
and that $w_i = w_j = w_k = w_l$. This leads to case
(\ref{item-D4}) of Lemma \ref{lemma-D4}
where we also wrote out the consequences for the integers $m_i$, $m_j$, $m_k$,
and $m_l$.
\begin{lemma}
\label{lemma-D4}
Classification of proper subgraphs of the form
$$
\xymatrix{
\bullet \ar@{-}[r] & \bullet \ar@{-}[r] \ar@{-}[d] & \bullet \\
& \bullet
}
$$
If $n > 4$, then given four $(-2)$-indices $i, j, k, l$
with $a_{ij}, a_{ik}, a_{il}$ nonzero, then up
to ordering we have the $m$'s, $a$'s, $w$'s
\begin{enumerate}
\item
\label{item-D4}
are given by
$$
\left(
\begin{matrix}
m_1 \\
m_2 \\
m_3 \\
m_4
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
-2w & w & w & w \\
w & -2w & 0 & 0 \\
w & 0 & -2w & 0 \\
w & 0 & 0 & -2w
\end{matrix}
\right),
\quad
\left(
\begin{matrix}
w \\
w \\
w \\
w
\end{matrix}
\right)
$$
with $2m_1 \geq m_2 + m_3 + m_4$, $2m_2 \geq m_1$, $2m_3 \geq m_1$,
$2m_4 \geq m_1$. Observe that this implies $m_1 \geq \max(m_2, m_3, m_4)$.
\end{enumerate}
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\noindent
Suppose that $h$, $i$, $j$, $k$, and $l$ are five $(-2)$-indices
with $a_{hi} > 0$, $a_{ij} > 0$, $a_{jk} > 0$, and $a_{kl} > 0$.
In other words, the index $h$ ``meets'' $i$, $i$ ``meets'' $j$,
$j$ ``meets'' $k$, and $k$ ``meets'' $l$.
Then we can apply Lemmas \ref{lemma-three-by-three} and
\ref{lemma-four-by-four} to see that
$a_{hj} = a_{hk} = a_{ik} = a_{il} = a_{jl} = 0$
and that the fractions
$\frac{a_{hi}^2}{w_hw_i}, \frac{a_{ij}^2}{w_iw_j}, \frac{a_{jk}^2}{w_jw_k},
\frac{a_{kl}^2}{w_kw_l}$ are in $\{1, 2\}$ and the fraction
$\frac{a_{hl}^2}{w_hw_l} \in \{0, 1, 2\}$.
Since the matrix $A = (a_{ij})$ is semi-negative definite we see that the
matrix
$$
\left(
\begin{matrix}
-2w_h & a_{hi} & 0 & 0 & a_{hl} \\
a_{hi} & -2w_i & a_{ij} & 0 & 0 \\
0 & a_{ij} & -2w_j & a_{jk} & 0 \\