1.Automatically Discovering Novel Visual Categories with Self-supervised Prototype Learning ⬇️
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections. The NCD task is challenging due to the closeness to the real-world scenarios, where we have only encountered some partial classes and images. Unlike other works on the NCD, we leverage the prototypes to emphasize the importance of category discrimination and alleviate the issue of missing annotations of novel classes. Concretely, we propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training. In the first stage, we obtain a robust feature extractor, which could serve for all images with base and novel categories. This ability of instance and category discrimination of the feature extractor is boosted by self-supervised learning and adaptive prototypes. In the second stage, we utilize the prototypes again to rectify offline pseudo labels and train a final parametric classifier for category clustering. We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.
2.Information Gain Sampling for Active Learning in Medical Image Classification ⬇️
Large, annotated datasets are not widely available in medical image analysis due to the prohibitive time, costs, and challenges associated with labelling large datasets. Unlabelled datasets are easier to obtain, and in many contexts, it would be feasible for an expert to provide labels for a small subset of images. This work presents an information-theoretic active learning framework that guides the optimal selection of images from the unlabelled pool to be labeled based on maximizing the expected information gain (EIG) on an evaluation dataset. Experiments are performed on two different medical image classification datasets: multi-class diabetic retinopathy disease scale classification and multi-class skin lesion classification. Results indicate that by adapting EIG to account for class-imbalances, our proposed Adapted Expected Information Gain (AEIG) outperforms several popular baselines including the diversity based CoreSet and uncertainty based maximum entropy sampling. Specifically, AEIG achieves ~95% of overall performance with only 19% of the training data, while other active learning approaches require around 25%. We show that, by careful design choices, our model can be integrated into existing deep learning classifiers.
3.Counterfactual Intervention Feature Transfer for Visible-Infrared Person Re-identification ⬇️
Graph-based models have achieved great success in person re-identification tasks recently, which compute the graph topology structure (affinities) among different people first and then pass the information across them to achieve stronger features. But we find existing graph-based methods in the visible-infrared person re-identification task (VI-ReID) suffer from bad generalization because of two issues: 1) train-test modality balance gap, which is a property of VI-ReID task. The number of two modalities data are balanced in the training stage, but extremely unbalanced in inference, causing the low generalization of graph-based VI-ReID methods. 2) sub-optimal topology structure caused by the end-to-end learning manner to the graph module. We analyze that the well-trained input features weaken the learning of graph topology, making it not generalized enough during the inference process. In this paper, we propose a Counterfactual Intervention Feature Transfer (CIFT) method to tackle these problems. Specifically, a Homogeneous and Heterogeneous Feature Transfer (H2FT) is designed to reduce the train-test modality balance gap by two independent types of well-designed graph modules and an unbalanced scenario simulation. Besides, a Counterfactual Relation Intervention (CRI) is proposed to utilize the counterfactual intervention and causal effect tools to highlight the role of topology structure in the whole training process, which makes the graph topology structure more reliable. Extensive experiments on standard VI-ReID benchmarks demonstrate that CIFT outperforms the state-of-the-art methods under various settings.
4.FrOoDo: Framework for Out-of-Distribution Detection ⬇️
FrOoDo is an easy-to-use and flexible framework for Out-of-Distribution detection tasks in digital pathology. It can be used with PyTorch classification and segmentation models, and its modular design allows for easy extension. The goal is to automate the task of OoD Evaluation such that research can focus on the main goal of either designing new models, new methods or evaluating a new dataset. The code can be found at this https URL.
5.Large-Scale Product Retrieval with Weakly Supervised Representation Learning ⬇️
Large-scale weakly supervised product retrieval is a practically useful yet computationally challenging problem. This paper introduces a novel solution for the eBay Visual Search Challenge (eProduct) held at the Ninth Workshop on Fine-Grained Visual Categorisation workshop (FGVC9) of CVPR 2022. This competition presents two challenges: (a) E-commerce is a drastically fine-grained domain including many products with subtle visual differences; (b) A lacking of target instance-level labels for model training, with only coarse category labels and product titles available. To overcome these obstacles, we formulate a strong solution by a set of dedicated designs: (a) Instead of using text training data directly, we mine thousands of pseudo-attributes from product titles and use them as the ground truths for multi-label classification. (b) We incorporate several strong backbones with advanced training recipes for more discriminative representation learning. (c) We further introduce a number of post-processing techniques including whitening, re-ranking and model ensemble for retrieval enhancement. By achieving 71.53% MAR, our solution "Involution King" achieves the second position on the leaderboard.
6.Motion-aware Memory Network for Fast Video Salient Object Detection ⬇️
Previous methods based on 3DCNN, convLSTM, or optical flow have achieved great success in video salient object detection (VSOD). However, they still suffer from high computational costs or poor quality of the generated saliency maps. To solve these problems, we design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD. Furthermore, previous methods only considered single-frame prediction without temporal association. As a result, the model may not focus on the temporal information sufficiently. Thus, we initially introduce object motion prediction between inter-frame into VSOD. Our model follows standard encoder--decoder architecture. In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames. This approach is more efficient than the optical flow-based methods. In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches. The semantic information of the high-level features is used to fuse the object details in the low-level features, and then the spatiotemporal features are obtained step by step to reconstruct the saliency maps. Moreover, inspired by the boundary supervision commonly used in image salient object detection (ISOD), we design a motion-aware loss for predicting object boundary motion and simultaneously perform multitask learning for VSOD and object motion prediction, which can further facilitate the model to extract spatiotemporal features accurately and maintain the object integrity. Extensive experiments on several datasets demonstrated the effectiveness of our method and can achieve state-of-the-art metrics on some datasets. The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
7.DoF-NeRF: Depth-of-Field Meets Neural Radiance Fields ⬇️
Neural Radiance Field (NeRF) and its variants have exhibited great success on representing 3D scenes and synthesizing photo-realistic novel views. However, they are generally based on the pinhole camera model and assume all-in-focus inputs. This limits their applicability as images captured from the real world often have finite depth-of-field (DoF). To mitigate this issue, we introduce DoF-NeRF, a novel neural rendering approach that can deal with shallow DoF inputs and can simulate DoF effect. In particular, it extends NeRF to simulate the aperture of lens following the principles of geometric optics. Such a physical guarantee allows DoF-NeRF to operate views with different focus configurations. Benefiting from explicit aperture modeling, DoF-NeRF also enables direct manipulation of DoF effect by adjusting virtual aperture and focus parameters. It is plug-and-play and can be inserted into NeRF-based frameworks. Experiments on synthetic and real-world datasets show that, DoF-NeRF not only performs comparably with NeRF in the all-in-focus setting, but also can synthesize all-in-focus novel views conditioned on shallow DoF inputs. An interesting application of DoF-NeRF to DoF rendering is also demonstrated. The source code will be made available at this https URL.
8.Video Question Answering with Iterative Video-Text Co-Tokenization ⬇️
Video question answering is a challenging task that requires understanding jointly the language input, the visual information in individual video frames, as well as the temporal information about the events occurring in the video. In this paper, we propose a novel multi-stream video encoder for video question answering that uses multiple video inputs and a new video-text iterative co-tokenization approach to answer a variety of questions related to videos. We experimentally evaluate the model on several datasets, such as MSRVTT-QA, MSVD-QA, IVQA, outperforming the previous state-of-the-art by large margins. Simultaneously, our model reduces the required GFLOPs from 150-360 to only 67, producing a highly efficient video question answering model.
9.OmniCity: Omnipotent City Understanding with Multi-level and Multi-view Images ⬇️
This paper presents OmniCity, a new dataset for omnipotent city understanding from multi-level and multi-view images. More precisely, the OmniCity contains multi-view satellite images as well as street-level panorama and mono-view images, constituting over 100K pixel-wise annotated images that are well-aligned and collected from 25K geo-locations in New York City. To alleviate the substantial pixel-wise annotation efforts, we propose an efficient street-view image annotation pipeline that leverages the existing label maps of satellite view and the transformation relations between different views (satellite, panorama, and mono-view). With the new OmniCity dataset, we provide benchmarks for a variety of tasks including building footprint extraction, height estimation, and building plane/instance/fine-grained segmentation. We also analyze the impact of view on each task, the performance of different models, limitations of existing methods, etc. Compared with the existing multi-level and multi-view benchmarks, our OmniCity contains a larger number of images with richer annotation types and more views, provides more baseline results obtained from state-of-the-art models, and introduces a novel task for fine-grained building instance segmentation on street-level panorama images. Moreover, OmniCity provides new problem settings for existing tasks, such as cross-view image matching, synthesis, segmentation, detection, etc., and facilitates the developing of new methods for large-scale city understanding, reconstruction, and simulation. The OmniCity dataset as well as the benchmarks will be available at this https URL.
10.AdaWCT: Adaptive Whitening and Coloring Style Injection ⬇️
Adaptive instance normalization (AdaIN) has become the standard method for style injection: by re-normalizing features through scale-and-shift operations, it has found widespread use in style transfer, image generation, and image-to-image translation. In this work, we present a generalization of AdaIN which relies on the whitening and coloring transformation (WCT) which we dub AdaWCT, that we apply for style injection in large GANs. We show, through experiments on the StarGANv2 architecture, that this generalization, albeit conceptually simple, results in significant improvements in the quality of the generated images.
11.Benchmarking Visual-Inertial Deep Multimodal Fusion for Relative Pose Regression and Odometry-aided Absolute Pose Regression ⬇️
Visual-inertial localization is a key problem in computer vision and robotics applications such as virtual reality, self-driving cars, and aerial vehicles. The goal is to estimate an accurate pose of an object when either the environment or the dynamics are known. Recent methods directly regress the pose using convolutional and spatio-temporal networks. Absolute pose regression (APR) techniques predict the absolute camera pose from an image input in a known scene. Odometry methods perform relative pose regression (RPR) that predicts the relative pose from a known object dynamic (visual or inertial inputs). The localization task can be improved by retrieving information of both data sources for a cross-modal setup, which is a challenging problem due to contradictory tasks. In this work, we conduct a benchmark to evaluate deep multimodal fusion based on PGO and attention networks. Auxiliary and Bayesian learning are integrated for the APR task. We show accuracy improvements for the RPR-aided APR task and for the RPR-RPR task for aerial vehicles and hand-held devices. We conduct experiments on the EuRoC MAV and PennCOSYVIO datasets, and record a novel industry dataset.
12.Understanding Adversarial Robustness of Vision Transformers via Cauchy Problem ⬇️
Recent research on the robustness of deep learning has shown that Vision Transformers (ViTs) surpass the Convolutional Neural Networks (CNNs) under some perturbations, e.g., natural corruption, adversarial attacks, etc. Some papers argue that the superior robustness of ViT comes from the segmentation of its input images; others say that the Multi-head Self-Attention (MSA) is the key to preserving the robustness. In this paper, we aim to introduce a principled and unified theoretical framework to investigate such an argument on ViT's robustness. We first theoretically prove that, unlike Transformers in Natural Language Processing, ViTs are Lipschitz continuous. Then we theoretically analyze the adversarial robustness of ViTs from the perspective of the Cauchy Problem, via which we can quantify how the robustness propagates through layers. We demonstrate that the first and last layers are the critical factors to affect the robustness of ViTs. Furthermore, based on our theory, we empirically show that unlike the claims from existing research, MSA only contributes to the adversarial robustness of ViTs under weak adversarial attacks, e.g., FGSM, and surprisingly, MSA actually comprises the model's adversarial robustness under stronger attacks, e.g., PGD attacks.
13.Retrieval of surgical phase transitions using reinforcement learning ⬇️
In minimally invasive surgery, surgical workflow segmentation from video analysis is a well studied topic. The conventional approach defines it as a multi-class classification problem, where individual video frames are attributed a surgical phase label.
We introduce a novel reinforcement learning formulation for offline phase transition retrieval. Instead of attempting to classify every video frame, we identify the timestamp of each phase transition. By construction, our model does not produce spurious and noisy phase transitions, but contiguous phase blocks. We investigate two different configurations of this model. The first does not require processing all frames in a video (only <60% and <20% of frames in 2 different applications), while producing results slightly under the state-of-the-art accuracy. The second configuration processes all video frames, and outperforms the state-of-the art at a comparable computational cost.
We compare our method against the recent top-performing frame-based approaches TeCNO and Trans-SVNet on the public dataset Cholec80 and also on an in-house dataset of laparoscopic sacrocolpopexy. We perform both a frame-based (accuracy, precision, recall and F1-score) and an event-based (event ratio) evaluation of our algorithms.
14.Computer vision-based analysis of buildings and built environments: A systematic review of current approaches ⬇️
Analysing 88 sources published from 2011 to 2021, this paper presents a first systematic review of the computer vision-based analysis of buildings and the built environments to assess its value to architectural and urban design studies. Following a multi-stage selection process, the types of algorithms and data sources used are discussed in respect to architectural applications such as a building classification, detail classification, qualitative environmental analysis, building condition survey, and building value estimation. This reveals current research gaps and trends, and highlights two main categories of research aims. First, to use or optimise computer vision methods for architectural image data, which can then help automate time-consuming, labour-intensive, or complex tasks of visual analysis. Second, to explore the methodological benefits of machine learning approaches to investigate new questions about the built environment by finding patterns and relationships between visual, statistical, and qualitative data, which can overcome limitations of conventional manual analysis. The growing body of research offers new methods to architectural and design studies, with the paper identifying future challenges and directions of research.
15.S$^2$Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning ⬇️
Despite the recent efforts in accurate 3D annotations in hand and object datasets, there still exist gaps in 3D hand and object reconstructions. Existing works leverage contact maps to refine inaccurate hand-object pose estimations and generate grasps given object models. However, they require explicit 3D supervision which is seldom available and therefore, are limited to constrained settings, e.g., where thermal cameras observe residual heat left on manipulated objects. In this paper, we propose a novel semi-supervised framework that allows us to learn contact from monocular images. Specifically, we leverage visual and geometric consistency constraints in large-scale datasets for generating pseudo-labels in semi-supervised learning and propose an efficient graph-based network to infer contact. Our semi-supervised learning framework achieves a favourable improvement over the existing supervised learning methods trained on data with `limited' annotations. Notably, our proposed model is able to achieve superior results with less than half the network parameters and memory access cost when compared with the commonly-used PointNet-based approach. We show benefits from using a contact map that rules hand-object interactions to produce more accurate reconstructions. We further demonstrate that training with pseudo-labels can extend contact map estimations to out-of-domain objects and generalise better across multiple datasets.
16.ATCA: an Arc Trajectory Based Model with Curvature Attention for Video Frame Interpolation ⬇️
Video frame interpolation is a classic and challenging low-level computer vision task. Recently, deep learning based methods have achieved impressive results, and it has been proven that optical flow based methods can synthesize frames with higher quality. However, most flow-based methods assume a line trajectory with a constant velocity between two input frames. Only a little work enforces predictions with curvilinear trajectory, but this requires more than two frames as input to estimate the acceleration, which takes more time and memory to execute. To address this problem, we propose an arc trajectory based model (ATCA), which learns motion prior from only two consecutive frames and also is lightweight. Experiments show that our approach performs better than many SOTA methods with fewer parameters and faster inference speed.
17.MAFW: A Large-scale, Multi-modal, Compound Affective Database for Dynamic Facial Expression Recognition in the Wild ⬇️
Dynamic facial expression recognition (FER) databases provide important data support for affective computing and applications. However, most FER databases are annotated with several basic mutually exclusive emotional categories and contain only one modality, e.g., videos. The monotonous labels and modality cannot accurately imitate human emotions and fulfill applications in the real world. In this paper, we propose MAFW, a large-scale multi-modal compound affective database with 10,045 video-audio clips in the wild. Each clip is annotated with a compound emotional category and a couple of sentences that describe the subjects' affective behaviors in the clip. For the compound emotion annotation, each clip is categorized into one or more of the 11 widely-used emotions, i.e., anger, disgust, fear, happiness, neutral, sadness, surprise, contempt, anxiety, helplessness, and disappointment. To ensure high quality of the labels, we filter out the unreliable annotations by an Expectation Maximization (EM) algorithm, and then obtain 11 single-label emotion categories and 32 multi-label emotion categories. To the best of our knowledge, MAFW is the first in-the-wild multi-modal database annotated with compound emotion annotations and emotion-related captions. Additionally, we also propose a novel Transformer-based expression snippet feature learning method to recognize the compound emotions leveraging the expression-change relations among different emotions and modalities. Extensive experiments on MAFW database show the advantages of the proposed method over other state-of-the-art methods for both uni- and multi-modal FER. Our MAFW database is publicly available from this https URL.
18.Safe Perception -- A Hierarchical Monitor Approach ⬇️
Our transportation world is rapidly transforming induced by an ever increasing level of autonomy. However, to obtain license of fully automated vehicles for widespread public use, it is necessary to assure safety of the entire system, which is still a challenge. This holds in particular for AI-based perception systems that have to handle a diversity of environmental conditions and road users, and at the same time should robustly detect all safety relevant objects (i.e no detection misses should occur). Yet, limited training and validation data make a proof of fault-free operation hardly achievable, as the perception system might be exposed to new, yet unknown objects or conditions on public roads. Hence, new safety approaches for AI-based perception systems are required. For this reason we propose in this paper a novel hierarchical monitoring approach that is able to validate the object list from a primary perception system, can reliably detect detection misses, and at the same time has a very low false alarm rate.
19.DSLA: Dynamic smooth label assignment for efficient anchor-free object detection ⬇️
Anchor-free detectors basically formulate object detection as dense classification and regression. For popular anchor-free detectors, it is common to introduce an individual prediction branch to estimate the quality of localization. The following inconsistencies are observed when we delve into the practices of classification and quality estimation. Firstly, for some adjacent samples which are assigned completely different labels, the trained model would produce similar classification scores. This violates the training objective and leads to performance degradation. Secondly, it is found that detected bounding boxes with higher confidences contrarily have smaller overlaps with the corresponding ground-truth. Accurately localized bounding boxes would be suppressed by less accurate ones in the Non-Maximum Suppression (NMS) procedure. To address the inconsistency problems, the Dynamic Smooth Label Assignment (DSLA) method is proposed. Based on the concept of centerness originally developed in FCOS, a smooth assignment strategy is proposed. The label is smoothed to a continuous value in [0, 1] to make a steady transition between positive and negative samples. Intersection-of-Union (IoU) is predicted dynamically during training and is coupled with the smoothed label. The dynamic smooth label is assigned to supervise the classification branch. Under such supervision, quality estimation branch is naturally merged into the classification branch, which simplifies the architecture of anchor-free detector. Comprehensive experiments are conducted on the MS COCO benchmark. It is demonstrated that, DSLA can significantly boost the detection accuracy by alleviating the above inconsistencies for anchor-free detectors. Our codes are released at this https URL.
20.Skeleton-free Pose Transfer for Stylized 3D Characters ⬇️
We present the first method that automatically transfers poses between stylized 3D characters without skeletal rigging. In contrast to previous attempts to learn pose transformations on fixed or topology-equivalent skeleton templates, our method focuses on a novel scenario to handle skeleton-free characters with diverse shapes, topologies, and mesh connectivities. The key idea of our method is to represent the characters in a unified articulation model so that the pose can be transferred through the correspondent parts. To achieve this, we propose a novel pose transfer network that predicts the character skinning weights and deformation transformations jointly to articulate the target character to match the desired pose. Our method is trained in a semi-supervised manner absorbing all existing character data with paired/unpaired poses and stylized shapes. It generalizes well to unseen stylized characters and inanimate objects. We conduct extensive experiments and demonstrate the effectiveness of our method on this novel task.
21.Self-supervised learning with rotation-invariant kernels ⬇️
A major paradigm for learning image representations in a self-supervised manner is to learn a model that is invariant to some predefined image transformations (cropping, blurring, color jittering, etc.), while regularizing the embedding distribution to avoid learning a degenerate solution. Our first contribution is to propose a general kernel framework to design a generic regularization loss that promotes the embedding distribution to be close to the uniform distribution on the hypersphere, with respect to the maximum mean discrepancy pseudometric. Our framework uses rotation-invariant kernels defined on the hypersphere, also known as dot-product kernels. Our second contribution is to show that this flexible kernel approach encompasses several existing self-supervised learning methods, including uniformity-based and information-maximization methods. Finally, by exploring empirically several kernel choices, our experiments demonstrate that using a truncated rotation-invariant kernel provides competitive results compared to state-of-the-art methods, and we show practical situations where our method benefits from the kernel trick to reduce computational complexity.
22.A Hybrid CNN-LSTM model for Video Deepfake Detection by Leveraging Optical Flow Features ⬇️
Deepfakes are the synthesized digital media in order to create ultra-realistic fake videos to trick the spectator. Deep generative algorithms, such as, Generative Adversarial Networks(GAN) are widely used to accomplish such tasks. This approach synthesizes pseudo-realistic contents that are very difficult to distinguish by traditional detection methods. In most cases, Convolutional Neural Network(CNN) based discriminators are being used for detecting such synthesized media. However, it emphasise primarily on the spatial attributes of individual video frames, thereby fail to learn the temporal information from their inter-frame relations. In this paper, we leveraged an optical flow based feature extraction approach to extract the temporal features, which are then fed to a hybrid model for classification. This hybrid model is based on the combination of CNN and recurrent neural network (RNN) architectures. The hybrid model provides effective performance on open source data-sets such as, DFDC, FF++ and Celeb-DF. This proposed method shows an accuracy of 66.26%, 91.21% and 79.49% in DFDC, FF++, and Celeb-DF respectively with a very reduced No of sample size of approx 100 samples(frames). This promises early detection of fake contents compared to existing modalities.
23.On the robustness of self-supervised representations for multi-view object classification ⬇️
It is known that representations from self-supervised pre-training can perform on par, and often better, on various downstream tasks than representations from fully-supervised pre-training. This has been shown in a host of settings such as generic object classification and detection, semantic segmentation, and image retrieval. However, some issues have recently come to the fore that demonstrate some of the failure modes of self-supervised representations, such as performance on non-ImageNet-like data, or complex scenes. In this paper, we show that self-supervised representations based on the instance discrimination objective lead to better representations of objects that are more robust to changes in the viewpoint and perspective of the object. We perform experiments of modern self-supervised methods against multiple supervised baselines to demonstrate this, including approximating object viewpoint variation through homographies, and real-world tests based on several multi-view datasets. We find that self-supervised representations are more robust to object viewpoint and appear to encode more pertinent information about objects that facilitate the recognition of objects from novel views.
24.Verification system based on long-range iris and Graph Siamese Neural Networks ⬇️
Biometric systems represent valid solutions in tasks like user authentication and verification, since they are able to analyze physical and behavioural features with high precision. However, especially when physical biometrics are used, as is the case of iris recognition, they require specific hardware such as retina scanners, sensors, or HD cameras to achieve relevant results. At the same time, they require the users to be very close to the camera to extract high-resolution information. For this reason, in this work, we propose a novel approach that uses long-range (LR) distance images for implementing an iris verification system. More specifically, we present a novel methodology for converting LR iris images into graphs and then use Graph Siamese Neural Networks (GSNN) to predict whether two graphs belong to the same person. In this study, we not only describe this methodology but also evaluate how the spectral components of these images can be used for improving the graph extraction and the final classification task. Results demonstrate the suitability of this approach, encouraging the community to explore graph application in biometric systems.
25.Location retrieval using visible landmarks based qualitative place signatures ⬇️
Location retrieval based on visual information is to retrieve the location of an agent (e.g. human, robot) or the area they see by comparing the observations with a certain form of representation of the environment. Existing methods generally require precise measurement and storage of the observed environment features, which may not always be robust due to the change of season, viewpoint, occlusion, etc. They are also challenging to scale up and may not be applicable for humans due to the lack of measuring/imaging devices. Considering that humans often use less precise but easily produced qualitative spatial language and high-level semantic landmarks when describing an environment, a qualitative location retrieval method is proposed in this work by describing locations/places using qualitative place signatures (QPS), defined as the perceived spatial relations between ordered pairs of co-visible landmarks from viewers' perspective. After dividing the space into place cells each with individual signatures attached, a coarse-to-fine location retrieval method is proposed to efficiently identify the possible location(s) of viewers based on their qualitative observations. The usability and effectiveness of the proposed method were evaluated using openly available landmark datasets, together with simulated observations by considering the possible perception error.
26.Debiasing Deep Chest X-Ray Classifiers using Intra- and Post-processing Methods ⬇️
Deep neural networks for image-based screening and computer-aided diagnosis have achieved expert-level performance on various medical imaging modalities, including chest radiographs. Recently, several works have indicated that these state-of-the-art classifiers can be biased with respect to sensitive patient attributes, such as race or gender, leading to growing concerns about demographic disparities and discrimination resulting from algorithmic and model-based decision-making in healthcare. Fair machine learning has focused on mitigating such biases against disadvantaged or marginalised groups, mainly concentrating on tabular data or natural images. This work presents two novel intra-processing techniques based on fine-tuning and pruning an already-trained neural network. These methods are simple yet effective and can be readily applied post hoc in a setting where the protected attribute is unknown during the model development and test time. In addition, we compare several intra- and post-processing approaches applied to debiasing deep chest X-ray classifiers. To the best of our knowledge, this is one of the first efforts studying debiasing methods on chest radiographs. Our results suggest that the considered approaches successfully mitigate biases in fully connected and convolutional neural networks offering stable performance under various settings. The discussed methods can help achieve group fairness of deep medical image classifiers when deploying them in domains with different fairness considerations and constraints.
27.Visual correspondence-based explanations improve AI robustness and human-AI team accuracy ⬇️
Explaining artificial intelligence (AI) predictions is increasingly important and even imperative in many high-stakes applications where humans are the ultimate decision-makers. In this work, we propose two novel architectures of self-interpretable image classifiers that first explain, and then predict (as opposed to post-hoc explanations) by harnessing the visual correspondences between a query image and exemplars. Our models consistently improve (by 1 to 4 points) on out-of-distribution (OOD) datasets while performing marginally worse (by 1 to 2 points) on in-distribution tests than ResNet-50 and a
$k$ -nearest neighbor classifier (kNN). Via a large-scale, human study on ImageNet and CUB, our correspondence-based explanations are found to be more useful to users than kNN explanations. Our explanations help users more accurately reject AI's wrong decisions than all other tested methods. Interestingly, for the first time, we show that it is possible to achieve complementary human-AI team accuracy (i.e., that is higher than either AI-alone or human-alone), in ImageNet and CUB image classification tasks.
28.$\textrm{D}^3\textrm{Former}$: Debiased Dual Distilled Transformer for Incremental Learning ⬇️
Class incremental learning (CIL) involves learning a classification model where groups of new classes are encountered in every learning phase. The goal is to learn a unified model performant on all the classes observed so far. Given the recent popularity of Vision Transformers (ViTs) in conventional classification settings, an interesting question is to study their continual learning behaviour. In this work, we develop a Debiased Dual Distilled Transformer for CIL dubbed
$\textrm{D}^3\textrm{Former}$ . The proposed model leverages a hybrid nested ViT design to ensure data efficiency and scalability to small as well as large datasets. In contrast to a recent ViT based CIL approach, our$\textrm{D}^3\textrm{Former}$ does not dynamically expand its architecture when new tasks are learned and remains suitable for a large number of incremental tasks. The improved CIL behaviour of$\textrm{D}^3\textrm{Former}$ owes to two fundamental changes to the ViT design. First, we treat the incremental learning as a long-tail classification problem where the majority samples from new classes vastly outnumber the limited exemplars available for old classes. To avoid biasness against the minority old classes, we propose to dynamically adjust logits to emphasize on retaining the representations relevant to old tasks. Second, we propose to preserve the configuration of spatial attention maps as the learning progresses across tasks. This helps in reducing catastrophic forgetting via constraining the model to retain the attention on the most discriminative regions.$\textrm{D}^3\textrm{Former}$ obtains favorable results on incremental versions of CIFAR-100, MNIST, SVHN, and ImageNet datasets.
29.Deep 360$^\circ$ Optical Flow Estimation Based on Multi-Projection Fusion ⬇️
Optical flow computation is essential in the early stages of the video processing pipeline. This paper focuses on a less explored problem in this area, the 360$^\circ$ optical flow estimation using deep neural networks to support increasingly popular VR applications. To address the distortions of panoramic representations when applying convolutional neural networks, we propose a novel multi-projection fusion framework that fuses the optical flow predicted by the models trained using different projection methods. It learns to combine the complementary information in the optical flow results under different projections. We also build the first large-scale panoramic optical flow dataset to support the training of neural networks and the evaluation of panoramic optical flow estimation methods. The experimental results on our dataset demonstrate that our method outperforms the existing methods and other alternative deep networks that were developed for processing 360° content.
30.Pavementscapes: a large-scale hierarchical image dataset for asphalt pavement damage segmentation ⬇️
Pavement damage segmentation has benefited enormously from deep learning. % and large-scale datasets. However, few current public datasets limit the potential exploration of deep learning in the application of pavement damage segmentation. To address this problem, this study has proposed Pavementscapes, a large-scale dataset to develop and evaluate methods for pavement damage segmentation. Pavementscapes is comprised of 4,000 images with a resolution of
$1024 \times 2048$ , which have been recorded in the real-world pavement inspection projects with 15 different pavements. A total of 8,680 damage instances are manually labeled with six damage classes at the pixel level. The statistical study gives a thorough investigation and analysis of the proposed dataset. The numeral experiments propose the top-performing deep neural networks capable of segmenting pavement damages, which provides the baselines of the open challenge for pavement inspection. The experiment results also indicate the existing problems for damage segmentation using deep learning, and this study provides potential solutions.
31.Real Time Object Detection System with YOLO and CNN Models: A Review ⬇️
The field of artificial intelligence is built on object detection techniques. YOU ONLY LOOK ONCE (YOLO) algorithm and it's more evolved versions are briefly described in this research survey. This survey is all about YOLO and convolution neural networks (CNN)in the direction of real time object detection.YOLO does generalized object representation more effectively without precision losses than other object detection models.CNN architecture models have the ability to eliminate highlights and identify objects in any given image. When implemented appropriately, CNN models can address issues like deformity diagnosis, creating educational or instructive application, etc. This article reached atnumber of observations and perspective findings through the analysis.Also it provides support for the focused visual information and feature extraction in the financial and other industries, highlights the method of target detection and feature selection, and briefly describe the development process of YOLO algorithm.
32.Multimodal Neural Machine Translation with Search Engine Based Image Retrieval ⬇️
Recently, numbers of works shows that the performance of neural machine translation (NMT) can be improved to a certain extent with using visual information. However, most of these conclusions are drawn from the analysis of experimental results based on a limited set of bilingual sentence-image pairs, such as Multi30K. In these kinds of datasets, the content of one bilingual parallel sentence pair must be well represented by a manually annotated image, which is different with the actual translation situation. Some previous works are proposed to addressed the problem by retrieving images from exiting sentence-image pairs with topic model. However, because of the limited collection of sentence-image pairs they used, their image retrieval method is difficult to deal with the out-of-vocabulary words, and can hardly prove that visual information enhance NMT rather than the co-occurrence of images and sentences. In this paper, we propose an open-vocabulary image retrieval methods to collect descriptive images for bilingual parallel corpus using image search engine. Next, we propose text-aware attentive visual encoder to filter incorrectly collected noise images. Experiment results on Multi30K and other two translation datasets show that our proposed method achieves significant improvements over strong baselines.
33.CSDN: Cross-modal Shape-transfer Dual-refinement Network for Point Cloud Completion ⬇️
How will you repair a physical object with some missings? You may imagine its original shape from previously captured images, recover its overall (global) but coarse shape first, and then refine its local details. We are motivated to imitate the physical repair procedure to address point cloud completion. To this end, we propose a cross-modal shape-transfer dual-refinement network (termed CSDN), a coarse-to-fine paradigm with images of full-cycle participation, for quality point cloud completion. CSDN mainly consists of "shape fusion" and "dual-refinement" modules to tackle the cross-modal challenge. The first module transfers the intrinsic shape characteristics from single images to guide the geometry generation of the missing regions of point clouds, in which we propose IPAdaIN to embed the global features of both the image and the partial point cloud into completion. The second module refines the coarse output by adjusting the positions of the generated points, where the local refinement unit exploits the geometric relation between the novel and the input points by graph convolution, and the global constraint unit utilizes the input image to fine-tune the generated offset. Different from most existing approaches, CSDN not only explores the complementary information from images but also effectively exploits cross-modal data in the whole coarse-to-fine completion procedure. Experimental results indicate that CSDN performs favorably against ten competitors on the cross-modal benchmark.
34.Fashion Recommendation Based on Style and Social Events ⬇️
Fashion recommendation is often declined as the task of finding complementary items given a query garment or retrieving outfits that are suitable for a given user. In this work we address the problem by adding an additional semantic layer based on the style of the proposed dressing. We model style according to two important aspects: the mood and the emotion concealed behind color combination patterns and the appropriateness of the retrieved garments for a given type of social event. To address the former we rely on Shigenobu Kobayashi's color image scale, which associated emotional patterns and moods to color triples. The latter instead is analyzed by extracting garments from images of social events. Overall, we integrate in a state of the art garment recommendation framework a style classifier and an event classifier in order to condition recommendation on a given query.
35.Cross Attention Based Style Distribution for Controllable Person Image Synthesis ⬇️
Controllable person image synthesis task enables a wide range of applications through explicit control over body pose and appearance. In this paper, we propose a cross attention based style distribution module that computes between the source semantic styles and target pose for pose transfer. The module intentionally selects the style represented by each semantic and distributes them according to the target pose. The attention matrix in cross attention expresses the dynamic similarities between the target pose and the source styles for all semantics. Therefore, it can be utilized to route the color and texture from the source image, and is further constrained by the target parsing map to achieve a clearer objective. At the same time, to encode the source appearance accurately, the self attention among different semantic styles is also added. The effectiveness of our model is validated quantitatively and qualitatively on pose transfer and virtual try-on tasks.
36.Generative Bias for Visual Question Answering ⬇️
The task of Visual Question Answering (VQA) is known to be plagued by the issue of VQA models exploiting biases within the dataset to make its final prediction. Many previous ensemble based debiasing methods have been proposed where an additional model is purposefully trained to be biased in order to aid in training a robust target model. However, these methods compute the bias for a model from the label statistics of the training data or directly from single modal branches. In contrast, in this work, in order to better learn the bias a target VQA model suffers from, we propose a generative method to train the bias model \emph{directly from the target model}, called GenB. In particular, GenB employs a generative network to learn the bias through a combination of the adversarial objective and knowledge distillation. We then debias our target model with GenB as a bias model, and show through extensive experiments the effects of our method on various VQA bias datasets including VQA-CP2, VQA-CP1, GQA-OOD, and VQA-CE.
37.Local Perception-Aware Transformer for Aerial Tracking ⬇️
Transformer-based visual object tracking has been utilized extensively. However, the Transformer structure is lack of enough inductive bias. In addition, only focusing on encoding the global feature does harm to modeling local details, which restricts the capability of tracking in aerial robots. Specifically, with local-modeling to global-search mechanism, the proposed tracker replaces the global encoder by a novel local-recognition encoder. In the employed encoder, a local-recognition attention and a local element correction network are carefully designed for reducing the global redundant information interference and increasing local inductive bias. Meanwhile, the latter can model local object details precisely under aerial view through detail-inquiry net. The proposed method achieves competitive accuracy and robustness in several authoritative aerial benchmarks with 316 sequences in total. The proposed tracker's practicability and efficiency have been validated by the real-world tests.
38.SiamixFormer: A Siamese Transformer Network For Building Detection And Change Detection From Bi-Temporal Remote Sensing Images ⬇️
Building detection and change detection using remote sensing images can help urban and rescue planning. Moreover, they can be used for building damage assessment after natural disasters. Currently, most of the existing models for building detection use only one image (pre-disaster image) to detect buildings. This is based on the idea that post-disaster images reduce the model's performance because of presence of destroyed buildings. In this paper, we propose a siamese model, called SiamixFormer, which uses pre- and post-disaster images as input. Our model has two encoders and has a hierarchical transformer architecture. The output of each stage in both encoders is given to a temporal transformer for feature fusion in a way that query is generated from pre-disaster images and (key, value) is generated from post-disaster images. To this end, temporal features are also considered in feature fusion. Another advantage of using temporal transformers in feature fusion is that they can better maintain large receptive fields generated by transformer encoders compared with CNNs. Finally, the output of the temporal transformer is given to a simple MLP decoder at each stage. The SiamixFormer model is evaluated on xBD, and WHU datasets, for building detection and on LEVIR-CD and CDD datasets for change detection and could outperform the state-of-the-art.
39.Dress Well via Fashion Cognitive Learning ⬇️
Fashion compatibility models enable online retailers to easily obtain a large number of outfit compositions with good quality. However, effective fashion recommendation demands precise service for each customer with a deeper cognition of fashion. In this paper, we conduct the first study on fashion cognitive learning, which is fashion recommendations conditioned on personal physical information. To this end, we propose a Fashion Cognitive Network (FCN) to learn the relationships among visual-semantic embedding of outfit composition and appearance features of individuals. FCN contains two submodules, namely outfit encoder and Multi-label Graph Neural Network (ML-GCN). The outfit encoder uses a convolutional layer to encode an outfit into an outfit embedding. The latter module learns label classifiers via stacked GCN. We conducted extensive experiments on the newly collected O4U dataset, and the results provide strong qualitative and quantitative evidence that our framework outperforms alternative methods.
40.Multi-spectral Vehicle Re-identification with Cross-directional Consistency Network and a High-quality Benchmark ⬇️
To tackle the challenge of vehicle re-identification (Re-ID) in complex lighting environments and diverse scenes, multi-spectral sources like visible and infrared information are taken into consideration due to their excellent complementary advantages.
However, multi-spectral vehicle Re-ID suffers cross-modality discrepancy caused by heterogeneous properties of different modalities as well as a big challenge of the diverse appearance with different views in each identity.
Meanwhile, diverse environmental interference leads to heavy sample distributional discrepancy in each modality.
In this work, we propose a novel cross-directional consistency network to simultaneously overcome the discrepancies from both modality and sample aspects.
In particular, we design a new cross-directional center loss to pull the modality centers of each identity close to mitigate cross-modality discrepancy, while the sample centers of each identity close to alleviate the sample discrepancy. Such strategy can generate discriminative multi-spectral feature representations for vehicle Re-ID.
In addition, we design an adaptive layer normalization unit to dynamically adjust individual feature distribution to handle distributional discrepancy of intra-modality features for robust learning.
To provide a comprehensive evaluation platform, we create a high-quality RGB-NIR-TIR multi-spectral vehicle Re-ID benchmark (MSVR310), including 310 different vehicles from a broad range of viewpoints, time spans and environmental complexities.
Comprehensive experiments on both created and public datasets demonstrate the effectiveness of the proposed approach comparing to the state-of-the-art methods.
41.A Rotation Meanout Network with Invariance for Dermoscopy Image Classification and Retrieval ⬇️
The computer-aided diagnosis (CAD) system can provide a reference basis for the clinical diagnosis of skin diseases. Convolutional neural networks (CNNs) can not only extract visual elements such as colors and shapes but also semantic features. As such they have made great improvements in many tasks of dermoscopy images. The imaging of dermoscopy has no main direction, indicating that there are a large number of skin lesion target rotations in the datasets. However, CNNs lack anti-rotation ability, which is bound to affect the feature extraction ability of CNNs. We propose a rotation meanout (RM) network to extract rotation invariance features from dermoscopy images. In RM, each set of rotated feature maps corresponds to a set of weight-sharing convolution outputs and they are fused using meanout operation to obtain the final feature maps. Through theoretical derivation, the proposed RM network is rotation-equivariant and can extract rotation-invariant features when being followed by the global average pooling (GAP) operation. The extracted rotation-invariant features can better represent the original data in classification and retrieval tasks for dermoscopy images. The proposed RM is a general operation, which does not change the network structure or increase any parameter, and can be flexibly embedded in any part of CNNs. Extensive experiments are conducted on a dermoscopy image dataset. The results show our method outperforms other anti-rotation methods and achieves great improvements in dermoscopy image classification and retrieval tasks, indicating the potential of rotation invariance in the field of dermoscopy images.
42.Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric ⬇️
Arbitrary neural style transfer is a vital topic with research value and industrial application prospect, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the stylization quality. However, there are very few explorations about the quality evaluation of AST images, even it can potentially guide the design of different algorithms. In this paper, we first construct a new AST images quality assessment database (AST-IQAD) that consists 150 content-style image pairs and the corresponding 1200 stylized images produced by eight typical AST algorithms. Then, a subjective study is conducted on our AST-IQAD database, which obtains the subjective rating scores of all stylized images on the three subjective evaluations, i.e., content preservation (CP), style resemblance (SR), and overall visual (OV). To quantitatively measure the quality of AST image, we proposed a new sparse representation-based image quality evaluation metric (SRQE), which computes the quality using the sparse feature similarity. Experimental results on the AST-IQAD have demonstrated the superiority of the proposed method. The dataset and source code will be released at this https URL
43.Improving Fine-Grained Visual Recognition in Low Data Regimes via Self-Boosting Attention Mechanism ⬇️
The challenge of fine-grained visual recognition often lies in discovering the key discriminative regions. While such regions can be automatically identified from a large-scale labeled dataset, a similar method might become less effective when only a few annotations are available. In low data regimes, a network often struggles to choose the correct regions for recognition and tends to overfit spurious correlated patterns from the training data. To tackle this issue, this paper proposes the self-boosting attention mechanism, a novel method for regularizing the network to focus on the key regions shared across samples and classes. Specifically, the proposed method first generates an attention map for each training image, highlighting the discriminative part for identifying the ground-truth object category. Then the generated attention maps are used as pseudo-annotations. The network is enforced to fit them as an auxiliary task. We call this approach the self-boosting attention mechanism (SAM). We also develop a variant by using SAM to create multiple attention maps to pool convolutional maps in a style of bilinear pooling, dubbed SAM-Bilinear. Through extensive experimental studies, we show that both methods can significantly improve fine-grained visual recognition performance on low data regimes and can be incorporated into existing network architectures. The source code is publicly available at: this https URL
44.Accurate Polygonal Mapping of Buildings in Satellite Imagery ⬇️
This paper studies the problem of polygonal mapping of buildings by tackling the issue of mask reversibility that leads to a notable performance gap between the predicted masks and polygons from the learning-based methods. We addressed such an issue by exploiting the hierarchical supervision (of bottom-level vertices, mid-level line segments and the high-level regional masks) and proposed a novel interaction mechanism of feature embedding sourced from different levels of supervision signals to obtain reversible building masks for polygonal mapping of buildings. As a result, we show that the learned reversible building masks take all the merits of the advances of deep convolutional neural networks for high-performing polygonal mapping of buildings. In the experiments, we evaluated our method on the two public benchmarks of AICrowd and Inria. On the AICrowd dataset, our proposed method obtains unanimous improvements on the metrics of AP, APboundary and PoLiS. For the Inria dataset, our proposed method also obtains very competitive results on the metrics of IoU and Accuracy. The models and source code are available at this https URL.
45.CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation ⬇️
Top-down methods dominate the field of 3D human pose and shape estimation, because they are decoupled from human detection and allow researchers to focus on the core problem. However, cropping, their first step, discards the location information from the very beginning, which makes themselves unable to accurately predict the global rotation in the original camera coordinate system. To address this problem, we propose to Carry Location Information in Full Frames (CLIFF) into this task. Specifically, we feed more holistic features to CLIFF by concatenating the cropped-image feature with its bounding box information. We calculate the 2D reprojection loss with a broader view of the full frame, taking a projection process similar to that of the person projected in the image. Fed and supervised by global-location-aware information, CLIFF directly predicts the global rotation along with more accurate articulated poses. Besides, we propose a pseudo-ground-truth annotator based on CLIFF, which provides high-quality 3D annotations for in-the-wild 2D datasets and offers crucial full supervision for regression-based methods. Extensive experiments on popular benchmarks show that CLIFF outperforms prior arts by a significant margin, and reaches the first place on the AGORA leaderboard (the SMPL-Algorithms track). The code and data are available at this https URL.
46.AvatarGen: a 3D Generative Model for Animatable Human Avatars ⬇️
Unsupervised generation of clothed virtual humans with various appearance and animatable poses is important for creating 3D human avatars and other AR/VR applications. Existing methods are either limited to rigid object modeling, or not generative and thus unable to synthesize high-quality virtual humans and animate them. In this work, we propose AvatarGen, the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints, while only requiring 2D images for training. Specifically, it extends the recent 3D GANs to clothed human generation by utilizing a coarse human body model as a proxy to warp the observation space into a standard avatar under a canonical space. To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space. To improve geometry quality of the generated human avatars, it leverages signed distance field as geometric representation, which allows more direct regularization from the body model on the geometry learning. Benefiting from these designs, our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs. Furthermore, it is competent for many applications, e.g., single-view reconstruction, reanimation, and text-guided synthesis. Code and pre-trained model will be available.
47.Analysis of Semi-Supervised Methods for Facial Expression Recognition ⬇️
Training deep neural networks for image recognition often requires large-scale human annotated data. To reduce the reliance of deep neural solutions on labeled data, state-of-the-art semi-supervised methods have been proposed in the literature. Nonetheless, the use of such semi-supervised methods has been quite rare in the field of facial expression recognition (FER). In this paper, we present a comprehensive study on recently proposed state-of-the-art semi-supervised learning methods in the context of FER. We conduct comparative study on eight semi-supervised learning methods, namely Pi-Model, Pseudo-label, Mean-Teacher, VAT, MixMatch, ReMixMatch, UDA, and FixMatch, on three FER datasets (FER13, RAF-DB, and AffectNet), when various amounts of labeled samples are used. We also compare the performance of these methods against fully-supervised training. Our study shows that when training existing semi-supervised methods on as little as 250 labeled samples per class can yield comparable performances to that of fully-supervised methods trained on the full labeled datasets. To facilitate further research in this area, we make our code publicly available at: this https URL
48.Is current research on adversarial robustness addressing the right problem? ⬇️
Short answer: Yes, Long answer: No! Indeed, research on adversarial robustness has led to invaluable insights helping us understand and explore different aspects of the problem. Many attacks and defenses have been proposed over the last couple of years. The problem, however, remains largely unsolved and poorly understood. Here, I argue that the current formulation of the problem serves short term goals, and needs to be revised for us to achieve bigger gains. Specifically, the bound on perturbation has created a somewhat contrived setting and needs to be relaxed. This has misled us to focus on model classes that are not expressive enough to begin with. Instead, inspired by human vision and the fact that we rely more on robust features such as shape, vertices, and foreground objects than non-robust features such as texture, efforts should be steered towards looking for significantly different classes of models. Maybe instead of narrowing down on imperceptible adversarial perturbations, we should attack a more general problem which is finding architectures that are simultaneously robust to perceptible perturbations, geometric transformations (e.g. rotation, scaling), image distortions (lighting, blur), and more (e.g. occlusion, shadow). Only then we may be able to solve the problem of adversarial vulnerability.
49.CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point Cloud Learning ⬇️
Processing 3D data efficiently has always been a challenge. Spatial operations on large-scale point clouds, stored as sparse data, require extra cost. Attracted by the success of transformers, researchers are using multi-head attention for vision tasks. However, attention calculations in transformers come with quadratic complexity in the number of inputs and miss spatial intuition on sets like point clouds. We redesign set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation. We propose our local attention unit, which captures features in a spatial neighborhood. We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration. Finally, to mitigate the non-heterogeneity of point clouds, we propose an efficient Multi-Scale Tokenization (MST), which extracts scale-invariant tokens for attention operations. The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods while requiring significantly fewer computations. Our proposed architecture predicts segmentation labels with around half the latency and parameter count of the previous most efficient method with comparable performance. The code is available at this https URL.
50.Assessing The Performance of YOLOv5 Algorithm for Detecting Volunteer Cotton Plants in Corn Fields at Three Different Growth Stages ⬇️
The boll weevil (Anthonomus grandis L.) is a serious pest that primarily feeds on cotton plants. In places like Lower Rio Grande Valley of Texas, due to sub-tropical climatic conditions, cotton plants can grow year-round and therefore the left-over seeds from the previous season during harvest can continue to grow in the middle of rotation crops like corn (Zea mays L.) and sorghum (Sorghum bicolor L.). These feral or volunteer cotton (VC) plants when reach the pinhead squaring phase (5-6 leaf stage) can act as hosts for the boll weevil pest. The Texas Boll Weevil Eradication Program (TBWEP) employs people to locate and eliminate VC plants growing by the side of roads or fields with rotation crops but the ones growing in the middle of fields remain undetected. In this paper, we demonstrate the application of computer vision (CV) algorithm based on You Only Look Once version 5 (YOLOv5) for detecting VC plants growing in the middle of corn fields at three different growth stages (V3, V6, and VT) using unmanned aircraft systems (UAS) remote sensing imagery. All the four variants of YOLOv5 (s, m, l, and x) were used and their performances were compared based on classification accuracy, mean average precision (mAP), and F1-score. It was found that YOLOv5s could detect VC plants with a maximum classification accuracy of 98% and mAP of 96.3 % at the V6 stage of corn while YOLOv5s and YOLOv5m resulted in the lowest classification accuracy of 85% and YOLOv5m and YOLOv5l had the least mAP of 86.5% at the VT stage on images of size 416 x 416 pixels. The developed CV algorithm has the potential to effectively detect and locate VC plants growing in the middle of corn fields as well as expedite the management aspects of TBWEP.
51.Augmenting Vision Language Pretraining by Learning Codebook with Visual Semantics ⬇️
Language modality within the vision language pretraining framework is innately discretized, endowing each word in the language vocabulary a semantic meaning. In contrast, visual modality is inherently continuous and high-dimensional, which potentially prohibits the alignment as well as fusion between vision and language modalities. We therefore propose to "discretize" the visual representation by joint learning a codebook that imbues each visual token a semantic. We then utilize these discretized visual semantics as self-supervised ground-truths for building our Masked Image Modeling objective, a counterpart of Masked Language Modeling which proves successful for language models. To optimize the codebook, we extend the formulation of VQ-VAE which gives a theoretic guarantee. Experiments validate the effectiveness of our approach across common vision-language benchmarks.
52.COCOA: Cross Modality Contrastive Learning for Sensor Data ⬇️
Self-Supervised Learning (SSL) is a new paradigm for learning discriminative representations without labelled data and has reached comparable or even state-of-the-art results in comparison to supervised counterparts. Contrastive Learning (CL) is one of the most well-known approaches in SSL that attempts to learn general, informative representations of data. CL methods have been mostly developed for applications in computer vision and natural language processing where only a single sensor modality is used. A majority of pervasive computing applications, however, exploit data from a range of different sensor modalities. While existing CL methods are limited to learning from one or two data sources, we propose COCOA (Cross mOdality COntrastive leArning), a self-supervised model that employs a novel objective function to learn quality representations from multisensor data by computing the cross-correlation between different data modalities and minimizing the similarity between irrelevant instances. We evaluate the effectiveness of COCOA against eight recently introduced state-of-the-art self-supervised models, and two supervised baselines across five public datasets. We show that COCOA achieves superior classification performance to all other approaches. Also, COCOA is far more label-efficient than the other baselines including the fully supervised model using only one-tenth of available labelled data.
53.INSightR-Net: Interpretable Neural Network for Regression using Similarity-based Comparisons to Prototypical Examples ⬇️
Convolutional neural networks (CNNs) have shown exceptional performance for a range of medical imaging tasks. However, conventional CNNs are not able to explain their reasoning process, therefore limiting their adoption in clinical practice. In this work, we propose an inherently interpretable CNN for regression using similarity-based comparisons (INSightR-Net) and demonstrate our methods on the task of diabetic retinopathy grading. A prototype layer incorporated into the architecture enables visualization of the areas in the image that are most similar to learned prototypes. The final prediction is then intuitively modeled as a mean of prototype labels, weighted by the similarities. We achieved competitive prediction performance with our INSightR-Net compared to a ResNet baseline, showing that it is not necessary to compromise performance for interpretability. Furthermore, we quantified the quality of our explanations using sparsity and diversity, two concepts considered important for a good explanation, and demonstrated the effect of several parameters on the latent space embeddings.
54.One-Shot Medical Landmark Localization by Edge-Guided Transform and Noisy Landmark Refinement ⬇️
As an important upstream task for many medical applications, supervised landmark localization still requires non-negligible annotation costs to achieve desirable performance. Besides, due to cumbersome collection procedures, the limited size of medical landmark datasets impacts the effectiveness of large-scale self-supervised pre-training methods. To address these challenges, we propose a two-stage framework for one-shot medical landmark localization, which first infers landmarks by unsupervised registration from the labeled exemplar to unlabeled targets, and then utilizes these noisy pseudo labels to train robust detectors. To handle the significant structure variations, we learn an end-to-end cascade of global alignment and local deformations, under the guidance of novel loss functions which incorporate edge information. In stage II, we explore self-consistency for selecting reliable pseudo labels and cross-consistency for semi-supervised learning. Our method achieves state-of-the-art performances on public datasets of different body parts, which demonstrates its general applicability.
55.SdAE: Self-distillated Masked Autoencoder ⬇️
With the development of generative-based self-supervised learning (SSL) approaches like BeiT and MAE, how to learn good representations by masking random patches of the input image and reconstructing the missing information has grown in concern. However, BeiT and PeCo need a "pre-pretraining" stage to produce discrete codebooks for masked patches representing. MAE does not require a pre-training codebook process, but setting pixels as reconstruction targets may introduce an optimization gap between pre-training and downstream tasks that good reconstruction quality may not always lead to the high descriptive capability for the model. Considering the above issues, in this paper, we propose a simple Self-distillated masked AutoEncoder network, namely SdAE. SdAE consists of a student branch using an encoder-decoder structure to reconstruct the missing information, and a teacher branch producing latent representation of masked tokens. We also analyze how to build good views for the teacher branch to produce latent representation from the perspective of information bottleneck. After that, we propose a multi-fold masking strategy to provide multiple masked views with balanced information for boosting the performance, which can also reduce the computational complexity. Our approach generalizes well: with only 300 epochs pre-training, a vanilla ViT-Base model achieves an 84.1% fine-tuning accuracy on ImageNet-1k classification, 48.6 mIOU on ADE20K segmentation, and 48.9 mAP on COCO detection, which surpasses other methods by a considerable margin. Code is available at this https URL.
56.Out-of-Distribution Detection with Semantic Mismatch under Masking ⬇️
This paper proposes a novel out-of-distribution (OOD) detection framework named MoodCat for image classifiers. MoodCat masks a random portion of the input image and uses a generative model to synthesize the masked image to a new image conditioned on the classification result. It then calculates the semantic difference between the original image and the synthesized one for OOD detection. Compared to existing solutions, MoodCat naturally learns the semantic information of the in-distribution data with the proposed mask and conditional synthesis strategy, which is critical to identifying OODs. Experimental results demonstrate that MoodCat outperforms state-of-the-art OOD detection solutions by a large margin.
57.BYOLMed3D: Self-Supervised Representation Learning of Medical Videos using Gradient Accumulation Assisted 3D BYOL Framework ⬇️
Applications on Medical Image Analysis suffer from acute shortage of large volume of data properly annotated by medical experts. Supervised Learning algorithms require a large volumes of balanced data to learn robust representations. Often supervised learning algorithms require various techniques to deal with imbalanced data. Self-supervised learning algorithms on the other hand are robust to imbalance in the data and are capable of learning robust representations. In this work, we train a 3D BYOL self-supervised model using gradient accumulation technique to deal with the large number of samples in a batch generally required in a self-supervised algorithm. To the best of our knowledge, this work is one of the first of its kind in this domain. We compare the results obtained through our experiments in the downstream task of ACL Tear Injury detection with the contemporary self-supervised pre-training methods and also with ResNet3D-18 initialized with the Kinetics-400 pre-trained weights. From the downstream task experiments, it is evident that the proposed framework outperforms the existing baselines.
58.Design What You Desire: Icon Generation from Orthogonal Application and Theme Labels ⬇️
Generative adversarial networks (GANs) have been trained to be professional artists able to create stunning artworks such as face generation and image style transfer. In this paper, we focus on a realistic business scenario: automated generation of customizable icons given desired mobile applications and theme styles. We first introduce a theme-application icon dataset, termed AppIcon, where each icon has two orthogonal theme and app labels. By investigating a strong baseline StyleGAN2, we observe mode collapse caused by the entanglement of the orthogonal labels. To solve this challenge, we propose IconGAN composed of a conditional generator and dual discriminators with orthogonal augmentations, and a contrastive feature disentanglement strategy is further designed to regularize the feature space of the two discriminators. Compared with other approaches, IconGAN indicates a superior advantage on the AppIcon benchmark. Further analysis also justifies the effectiveness of disentangling app and theme representations. Our project will be released at: this https URL.
59.Toward Understanding WordArt: Corner-Guided Transformer for Scene Text Recognition ⬇️
Artistic text recognition is an extremely challenging task with a wide range of applications. However, current scene text recognition methods mainly focus on irregular text while have not explored artistic text specifically. The challenges of artistic text recognition include the various appearance with special-designed fonts and effects, the complex connections and overlaps between characters, and the severe interference from background patterns. To alleviate these problems, we propose to recognize the artistic text at three levels. Firstly, corner points are applied to guide the extraction of local features inside characters, considering the robustness of corner structures to appearance and shape. In this way, the discreteness of the corner points cuts off the connection between characters, and the sparsity of them improves the robustness for background interference. Secondly, we design a character contrastive loss to model the character-level feature, improving the feature representation for character classification. Thirdly, we utilize Transformer to learn the global feature on image-level and model the global relationship of the corner points, with the assistance of a corner-query cross-attention mechanism. Besides, we provide an artistic text dataset to benchmark the performance. Experimental results verify the significant superiority of our proposed method on artistic text recognition and also achieve state-of-the-art performance on several blurred and perspective datasets.
60.Robust Real-World Image Super-Resolution against Adversarial Attacks ⬇️
Recently deep neural networks (DNNs) have achieved significant success in real-world image super-resolution (SR). However, adversarial image samples with quasi-imperceptible noises could threaten deep learning SR models. In this paper, we propose a robust deep learning framework for real-world SR that randomly erases potential adversarial noises in the frequency domain of input images or features. The rationale is that on the SR task clean images or features have a different pattern from the attacked ones in the frequency domain. Observing that existing adversarial attacks usually add high-frequency noises to input images, we introduce a novel random frequency mask module that blocks out high-frequency components possibly containing the harmful perturbations in a stochastic manner. Since the frequency masking may not only destroys the adversarial perturbations but also affects the sharp details in a clean image, we further develop an adversarial sample classifier based on the frequency domain of images to determine if applying the proposed mask module. Based on the above ideas, we devise a novel real-world image SR framework that combines the proposed frequency mask modules and the proposed adversarial classifier with an existing super-resolution backbone network. Experiments show that our proposed method is more insensitive to adversarial attacks and presents more stable SR results than existing models and defenses.
61.FixMatchSeg: Fixing FixMatch for Semi-Supervised Semantic Segmentation ⬇️
Supervised deep learning methods for semantic medical image segmentation are getting increasingly popular in the past few years.However, in resource constrained settings, getting large number of annotated images is very difficult as it mostly requires experts, is expensive and time-consuming.Semi-supervised segmentation can be an attractive solution where a very few labeled images are used along with a large number of unlabeled ones. While the gap between supervised and semi-supervised methods have been dramatically reduced for classification problems in the past couple of years, there still remains a larger gap in segmentation methods. In this work, we adapt a state-of-the-art semi-supervised classification method FixMatch to semantic segmentation task, introducing FixMatchSeg. FixMatchSeg is evaluated in four different publicly available datasets of different anatomy and different modality: cardiac ultrasound, chest X-ray, retinal fundus image, and skin images. When there are few labels, we show that FixMatchSeg performs on par with strong supervised baselines.
62.STrajNet: Occupancy Flow Prediction via Multi-modal Swin Transformer ⬇️
Making an accurate prediction of occupancy and flow is essential to enable better safety and interaction for autonomous vehicles under complex traffic scenarios. This work proposes STrajNet: a multi-modal Swin Transformerbased framework for effective scene occupancy and flow predictions. We employ Swin Transformer to encode the image and interaction-aware motion representations and propose a cross-attention module to inject motion awareness into grid cells across different time steps. Flow and occupancy predictions are then decoded through temporalsharing Pyramid decoders. The proposed method shows competitive prediction accuracy and other evaluation metrics in the Waymo Open Dataset benchmark.
63.PVBM: A Python Vasculature Biomarker Toolbox Based On Retinal Blood Vessel Segmentation ⬇️
Introduction: Blood vessels can be non-invasively visualized from a digital fundus image (DFI). Several studies have shown an association between cardiovascular risk and vascular features obtained from DFI. Recent advances in computer vision and image segmentation enable automatising DFI blood vessel segmentation. There is a need for a resource that can automatically compute digital vasculature biomarkers (VBM) from these segmented DFI. Methods: In this paper, we introduce a Python Vasculature BioMarker toolbox, denoted PVBM. A total of 11 VBMs were implemented. In particular, we introduce new algorithmic methods to estimate tortuosity and branching angles. Using PVBM, and as a proof of usability, we analyze geometric vascular differences between glaucomatous patients and healthy controls. Results: We built a fully automated vasculature biomarker toolbox based on DFI segmentations and provided a proof of usability to characterize the vascular changes in glaucoma. For arterioles and venules, all biomarkers were significant and lower in glaucoma patients compared to healthy controls except for tortuosity, venular singularity length and venular branching angles.
Conclusion: We have automated the computation of 11 VBMs from retinal blood vessel segmentation. The PVBM toolbox is made open source under a GNU GPL 3 license and is available on this http URL (following publication).
64.Evaluating Table Structure Recognition: A New Perspective ⬇️
Existing metrics used to evaluate table structure recognition algorithms have shortcomings with regard to capturing text and empty cells alignment. In this paper, we build on prior work and propose a new metric - TEDS based IOU similarity (TEDS (IOU)) for table structure recognition which uses bounding boxes instead of text while simultaneously being robust against the above disadvantages. We demonstrate the effectiveness of our metric against previous metrics through various examples.
65.Less is More: Consistent Video Depth Estimation with Masked Frames Modeling ⬇️
Temporal consistency is the key challenge of video depth estimation. Previous works are based on additional optical flow or camera poses, which is time-consuming. By contrast, we derive consistency with less information. Since videos inherently exist with heavy temporal redundancy, a missing frame could be recovered from neighboring ones. Inspired by this, we propose the frame masking network (FMNet), a spatial-temporal transformer network predicting the depth of masked frames based on their neighboring frames. By reconstructing masked temporal features, the FMNet can learn intrinsic inter-frame correlations, which leads to consistency. Compared with prior arts, experimental results demonstrate that our approach achieves comparable spatial accuracy and higher temporal consistency without any additional information. Our work provides a new perspective on consistent video depth estimation.
66.Neuro-Symbolic Learning: Principles and Applications in Ophthalmology ⬇️
Neural networks have been rapidly expanding in recent years, with novel strategies and applications. However, challenges such as interpretability, explainability, robustness, safety, trust, and sensibility remain unsolved in neural network technologies, despite the fact that they will unavoidably be addressed for critical applications. Attempts have been made to overcome the challenges in neural network computing by representing and embedding domain knowledge in terms of symbolic representations. Thus, the neuro-symbolic learning (NeSyL) notion emerged, which incorporates aspects of symbolic representation and bringing common sense into neural networks (NeSyL). In domains where interpretability, reasoning, and explainability are crucial, such as video and image captioning, question-answering and reasoning, health informatics, and genomics, NeSyL has shown promising outcomes. This review presents a comprehensive survey on the state-of-the-art NeSyL approaches, their principles, advances in machine and deep learning algorithms, applications such as opthalmology, and most importantly, future perspectives of this emerging field.
67.Skeleton-Parted Graph Scattering Networks for 3D Human Motion Prediction ⬇️
Graph convolutional network based methods that model the body-joints' relations, have recently shown great promise in 3D skeleton-based human motion prediction. However, these methods have two critical issues: first, deep graph convolutions filter features within only limited graph spectrums, losing sufficient information in the full band; second, using a single graph to model the whole body underestimates the diverse patterns on various body-parts. To address the first issue, we propose adaptive graph scattering, which leverages multiple trainable band-pass graph filters to decompose pose features into richer graph spectrum bands. To address the second issue, body-parts are modeled separately to learn diverse dynamics, which enables finer feature extraction along the spatial dimensions. Integrating the above two designs, we propose a novel skeleton-parted graph scattering network (SPGSN). The cores of the model are cascaded multi-part graph scattering blocks (MPGSBs), building adaptive graph scattering on diverse body-parts, as well as fusing the decomposed features based on the inferred spectrum importance and body-part interactions. Extensive experiments have shown that SPGSN outperforms state-of-the-art methods by remarkable margins of 13.8%, 9.3% and 2.7% in terms of 3D mean per joint position error (MPJPE) on Human3.6M, CMU Mocap and 3DPW datasets, respectively.
68.One for All: One-stage Referring Expression Comprehension with Dynamic Reasoning ⬇️
Referring Expression Comprehension (REC) is one of the most important tasks in visual reasoning that requires a model to detect the target object referred by a natural language expression. Among the proposed pipelines, the one-stage Referring Expression Comprehension (OSREC) has become the dominant trend since it merges the region proposal and selection stages. Many state-of-the-art OSREC models adopt a multi-hop reasoning strategy because a sequence of objects is frequently mentioned in a single expression which needs multi-hop reasoning to analyze the semantic relation. However, one unsolved issue of these models is that the number of reasoning steps needs to be pre-defined and fixed before inference, ignoring the varying complexity of expressions. In this paper, we propose a Dynamic Multi-step Reasoning Network, which allows the reasoning steps to be dynamically adjusted based on the reasoning state and expression complexity. Specifically, we adopt a Transformer module to memorize & process the reasoning state and a Reinforcement Learning strategy to dynamically infer the reasoning steps. The work achieves the state-of-the-art performance or significant improvements on several REC datasets, ranging from RefCOCO (+, g) with short expressions, to Ref-Reasoning, a dataset with long and complex compositional expressions.
69.Towards Intercultural Affect Recognition: Audio-Visual Affect Recognition in the Wild Across Six Cultures ⬇️
In our multicultural world, affect-aware AI systems that support humans need the ability to perceive affect across variations in emotion expression patterns across cultures. These models must perform well in cultural contexts on which they have not been trained. A standard assumption in affective computing is that affect recognition models trained and used within the same culture (intracultural) will perform better than models trained on one culture and used on different cultures (intercultural). We test this assumption and present the first systematic study of intercultural affect recognition models using videos of real-world dyadic interactions from six cultures. We develop an attention-based feature selection approach under temporal causal discovery to identify behavioral cues that can be leveraged in intercultural affect recognition models. Across all six cultures, our findings demonstrate that intercultural affect recognition models were as effective or more effective than intracultural models. We identify and contribute useful behavioral features for intercultural affect recognition; facial features from the visual modality were more useful than the audio modality in this study's context. Our paper presents a proof-of-concept and motivation for the future development of intercultural affect recognition systems.
70.Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation ⬇️
Training semantic segmentation models with few annotated samples has great potential in various real-world applications. For the few-shot segmentation task, the main challenge is how to accurately measure the semantic correspondence between the support and query samples with limited training data. To address this problem, we propose to aggregate the learnable covariance matrices with a deformable 4D Transformer to effectively predict the segmentation map. Specifically, in this work, we first devise a novel hard example mining mechanism to learn covariance kernels for the Gaussian process. The learned covariance kernel functions have great advantages over existing cosine similarity-based methods in correspondence measurement. Based on the learned covariance kernels, an efficient doubly deformable 4D Transformer module is designed to adaptively aggregate feature similarity maps into segmentation results. By combining these two designs, the proposed method can not only set new state-of-the-art performance on public benchmarks, but also converge extremely faster than existing methods. Experiments on three public datasets have demonstrated the effectiveness of our method.
71.Simplex Clustering via sBeta with Applications to Online Adjustments of Black-Box Predictions ⬇️
We explore clustering the softmax predictions of deep neural networks and introduce a novel probabilistic clustering method, referred to as k-sBetas. In the general context of clustering distributions, the existing methods focused on exploring distortion measures tailored to simplex data, such as the KL divergence, as alternatives to the standard Euclidean distance. We provide a general perspective of clustering distributions, which emphasizes that the statistical models underlying distortion-based methods may not be descriptive enough. Instead, we optimize a mixed-variable objective measuring the conformity of data within each cluster to the introduced sBeta density function, whose parameters are constrained and estimated jointly with binary assignment variables. Our versatile formulation approximates a variety of parametric densities for modeling cluster data, and enables to control the cluster-balance bias. This yields highly competitive performances for efficient unsupervised adjustment of black-box predictions in a variety of scenarios, including one-shot classification and unsupervised domain adaptation in real-time for road segmentation. Implementation is available at this https URL.
72.Point Primitive Transformer for Long-Term 4D Point Cloud Video Understanding ⬇️
This paper proposes a 4D backbone for long-term point cloud video understanding. A typical way to capture spatial-temporal context is using 4Dconv or transformer without hierarchy. However, those methods are neither effective nor efficient enough due to camera motion, scene changes, sampling patterns, and the complexity of 4D data. To address those issues, we leverage the primitive plane as a mid-level representation to capture the long-term spatial-temporal context in 4D point cloud videos and propose a novel hierarchical backbone named Point Primitive Transformer(PPTr), which is mainly composed of intra-primitive point transformers and primitive transformers. Extensive experiments show that PPTr outperforms the previous state of the arts on different tasks
73.MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures ⬇️
Neural Radiance Fields (NeRFs) have demonstrated amazing ability to synthesize images of 3D scenes from novel views. However, they rely upon specialized volumetric rendering algorithms based on ray marching that are mismatched to the capabilities of widely deployed graphics hardware. This paper introduces a new NeRF representation based on textured polygons that can synthesize novel images efficiently with standard rendering pipelines. The NeRF is represented as a set of polygons with textures representing binary opacities and feature vectors. Traditional rendering of the polygons with a z-buffer yields an image with features at every pixel, which are interpreted by a small, view-dependent MLP running in a fragment shader to produce a final pixel color. This approach enables NeRFs to be rendered with the traditional polygon rasterization pipeline, which provides massive pixel-level parallelism, achieving interactive frame rates on a wide range of compute platforms, including mobile phones.
74.Revisiting the Critical Factors of Augmentation-Invariant Representation Learning ⬇️
We focus on better understanding the critical factors of augmentation-invariant representation learning. We revisit MoCo v2 and BYOL and try to prove the authenticity of the following assumption: different frameworks bring about representations of different characteristics even with the same pretext task. We establish the first benchmark for fair comparisons between MoCo v2 and BYOL, and observe: (i) sophisticated model configurations enable better adaptation to pre-training dataset; (ii) mismatched optimization strategies of pre-training and fine-tuning hinder model from achieving competitive transfer performances. Given the fair benchmark, we make further investigation and find asymmetry of network structure endows contrastive frameworks to work well under the linear evaluation protocol, while may hurt the transfer performances on long-tailed classification tasks. Moreover, negative samples do not make models more sensible to the choice of data augmentations, nor does the asymmetric network structure. We believe our findings provide useful information for future work.
75.Improving Fine-tuning of Self-supervised Models with Contrastive Initialization ⬇️
Self-supervised learning (SSL) has achieved remarkable performance in pretraining the models that can be further used in downstream tasks via fine-tuning. However, these self-supervised models may not capture meaningful semantic information since the images belonging to the same class are always regarded as negative pairs in the contrastive loss. Consequently, the images of the same class are often located far away from each other in learned feature space, which would inevitably hamper the fine-tuning process. To address this issue, we seek to provide a better initialization for the self-supervised models by enhancing the semantic information. To this end, we propose a Contrastive Initialization (COIN) method that breaks the standard fine-tuning pipeline by introducing an extra initialization stage before fine-tuning. Extensive experiments show that, with the enriched semantics, our COIN significantly outperforms existing methods without introducing extra training cost and sets new state-of-the-arts on multiple downstream tasks.
76.RBP-Pose: Residual Bounding Box Projection for Category-Level Pose Estimation ⬇️
Category-level object pose estimation aims to predict the 6D pose as well as the 3D metric size of arbitrary objects from a known set of categories. Recent methods harness shape prior adaptation to map the observed point cloud into the canonical space and apply Umeyama algorithm to recover the pose and size. However, their shape prior integration strategy boosts pose estimation indirectly, which leads to insufficient pose-sensitive feature extraction and slow inference speed. To tackle this problem, in this paper, we propose a novel geometry-guided Residual Object Bounding Box Projection network RBP-Pose that jointly predicts object pose and residual vectors describing the displacements from the shape-prior-indicated object surface projections on the bounding box towards the real surface projections. Such definition of residual vectors is inherently zero-mean and relatively small, and explicitly encapsulates spatial cues of the 3D object for robust and accurate pose regression. We enforce geometry-aware consistency terms to align the predicted pose and residual vectors to further boost performance.
77.Learning Pseudo Front Depth for 2D Forward-Looking Sonar-based Multi-view Stereo ⬇️
Retrieving the missing dimension information in acoustic images from 2D forward-looking sonar is a well-known problem in the field of underwater robotics. There are works attempting to retrieve 3D information from a single image which allows the robot to generate 3D maps with fly-through motion. However, owing to the unique image formulation principle, estimating 3D information from a single image faces severe ambiguity problems. Classical methods of multi-view stereo can avoid the ambiguity problems, but may require a large number of viewpoints to generate an accurate model. In this work, we propose a novel learning-based multi-view stereo method to estimate 3D information. To better utilize the information from multiple frames, an elevation plane sweeping method is proposed to generate the depth-azimuth-elevation cost volume. The volume after regularization can be considered as a probabilistic volumetric representation of the target. Instead of performing regression on the elevation angles, we use pseudo front depth from the cost volume to represent the 3D information which can avoid the 2D-3D problem in acoustic imaging. High-accuracy results can be generated with only two or three images. Synthetic datasets were generated to simulate various underwater targets. We also built the first real dataset with accurate ground truth in a large scale water tank. Experimental results demonstrate the superiority of our method, compared to other state-of-the-art methods.
78.PolarMix: A General Data Augmentation Technique for LiDAR Point Clouds ⬇️
LiDAR point clouds, which are usually scanned by rotating LiDAR sensors continuously, capture precise geometry of the surrounding environment and are crucial to many autonomous detection and navigation tasks. Though many 3D deep architectures have been developed, efficient collection and annotation of large amounts of point clouds remain one major challenge in the analytic and understanding of point cloud data. This paper presents PolarMix, a point cloud augmentation technique that is simple and generic but can mitigate the data constraint effectively across different perception tasks and scenarios. PolarMix enriches point cloud distributions and preserves point cloud fidelity via two cross-scan augmentation strategies that cut, edit, and mix point clouds along the scanning direction. The first is scene-level swapping which exchanges point cloud sectors of two LiDAR scans that are cut along the azimuth axis. The second is instance-level rotation and paste which crops point instances from one LiDAR scan, rotates them by multiple angles (to create multiple copies), and paste the rotated point instances into other scans. Extensive experiments show that PolarMix achieves superior performance consistently across different perception tasks and scenarios. In addition, it can work as plug-and-play for various 3D deep architectures and also performs well for unsupervised domain adaptation.
79.Meta-DETR: Image-Level Few-Shot Detection with Inter-Class Correlation Exploitation ⬇️
Few-shot object detection has been extensively investigated by incorporating meta-learning into region-based detection frameworks. Despite its success, the said paradigm is still constrained by several factors, such as (i) low-quality region proposals for novel classes and (ii) negligence of the inter-class correlation among different classes. Such limitations hinder the generalization of base-class knowledge for the detection of novel-class objects. In this work, we design Meta-DETR, which (i) is the first image-level few-shot detector, and (ii) introduces a novel inter-class correlational meta-learning strategy to capture and leverage the correlation among different classes for robust and accurate few-shot object detection. Meta-DETR works entirely at image level without any region proposals, which circumvents the constraint of inaccurate proposals in prevalent few-shot detection frameworks. In addition, the introduced correlational meta-learning enables Meta-DETR to simultaneously attend to multiple support classes within a single feedforward, which allows to capture the inter-class correlation among different classes, thus significantly reducing the misclassification over similar classes and enhancing knowledge generalization to novel classes. Experiments over multiple few-shot object detection benchmarks show that the proposed Meta-DETR outperforms state-of-the-art methods by large margins. The implementation codes are available at this https URL.
80.Towards Privacy-Preserving, Real-Time and Lossless Feature Matching ⬇️
Most visual retrieval applications store feature vectors for downstream matching tasks. These vectors, from where user information can be spied out, will cause privacy leakage if not carefully protected. To mitigate privacy risks, current works primarily utilize non-invertible transformations or fully cryptographic algorithms. However, transformation-based methods usually fail to achieve satisfying matching performances while cryptosystems suffer from heavy computational overheads. In addition, secure levels of current methods should be improved to confront potential adversary attacks. To address these issues, this paper proposes a plug-in module called SecureVector that protects features by random permutations, 4L-DEC converting and existing homomorphic encryption techniques. For the first time, SecureVector achieves real-time and lossless feature matching among sanitized features, along with much higher security levels than current state-of-the-arts. Extensive experiments on face recognition, person re-identification, image retrieval, and privacy analyses demonstrate the effectiveness of our method. Given limited public projects in this field, codes of our method and implemented baselines are made open-source in this https URL.
81.Multiple Categories Of Visual Smoke Detection Database ⬇️
Smoke detection has become a significant task in associated industries due to the close relationship between the petrochemical industry's smoke emission and its safety production and environmental damage. There are several production situations in the real industrial production environment, including complete combustion of exhaust gas, inadequate combustion of exhaust gas, direct emission of exhaust gas, etc. We discovered that the datasets used in previous research work can only determine whether smoke is present or not, not its type. That is, the dataset's category does not map to the real-world production situations, which are not conducive to the precise regulation of the production system. As a result, we created a multi-categories smoke detection database that includes a total of 70196 images. We further employed multiple models to conduct the experiment on the proposed database, the results show that the performance of the current algorithms needs to be improved and demonstrate the effectiveness of the proposed database.
82.Few-shot Single-view 3D Reconstruction with Memory Prior Contrastive Network ⬇️
3D reconstruction of novel categories based on few-shot learning is appealing in real-world applications and attracts increasing research interests. Previous approaches mainly focus on how to design shape prior models for different categories. Their performance on unseen categories is not very competitive. In this paper, we present a Memory Prior Contrastive Network (MPCN) that can store shape prior knowledge in a few-shot learning based 3D reconstruction framework. With the shape memory, a multi-head attention module is proposed to capture different parts of a candidate shape prior and fuse these parts together to guide 3D reconstruction of novel categories. Besides, we introduce a 3D-aware contrastive learning method, which can not only complement the retrieval accuracy of memory network, but also better organize image features for downstream tasks. Compared with previous few-shot 3D reconstruction methods, MPCN can handle the inter-class variability without category annotations. Experimental results on a benchmark synthetic dataset and the Pascal3D+ real-world dataset show that our model outperforms the current state-of-the-art methods significantly.
83.A Survey on Masked Autoencoder for Self-supervised Learning in Vision and Beyond ⬇️
Masked autoencoders are scalable vision learners, as the title of MAE \cite{he2022masked}, which suggests that self-supervised learning (SSL) in vision might undertake a similar trajectory as in NLP. Specifically, generative pretext tasks with the masked prediction (e.g., BERT) have become a de facto standard SSL practice in NLP. By contrast, early attempts at generative methods in vision have been buried by their discriminative counterparts (like contrastive learning); however, the success of mask image modeling has revived the masking autoencoder (often termed denoising autoencoder in the past). As a milestone to bridge the gap with BERT in NLP, masked autoencoder has attracted unprecedented attention for SSL in vision and beyond. This work conducts a comprehensive survey of masked autoencoders to shed insight on a promising direction of SSL. As the first to review SSL with masked autoencoders, this work focuses on its application in vision by discussing its historical developments, recent progress, and implications for diverse applications.
84.Virtual Reality Simulator for Fetoscopic Spina Bifida Repair Surgery ⬇️
Spina Bifida (SB) is a birth defect developed during the early stage of pregnancy in which there is incomplete closing of the spine around the spinal cord. The growing interest in fetoscopic Spina-Bifida repair, which is performed in fetuses who are still in the pregnant uterus, prompts the need for appropriate training. The learning curve for such procedures is steep and requires excellent procedural skills. Computer-based virtual reality (VR) simulation systems offer a safe, cost-effective, and configurable training environment free from ethical and patient safety issues. However, to the best of our knowledge, there are currently no commercial or experimental VR training simulation systems available for fetoscopic SB-repair procedures. In this paper, we propose a novel VR simulator for core manual skills training for SB-repair. An initial simulation realism validation study was carried out by obtaining subjective feedback (face and content validity) from 14 clinicians. The overall simulation realism was on average marked 4.07 on a 5-point Likert scale (1 - very unrealistic, 5 - very realistic). Its usefulness as a training tool for SB-repair as well as in learning fundamental laparoscopic skills was marked 4.63 and 4.80, respectively. These results indicate that VR simulation of fetoscopic procedures may contribute to surgical training without putting fetuses and their mothers at risk. It could also facilitate wider adaptation of fetoscopic procedures in place of much more invasive open fetal surgeries.
85.Distilled Low Rank Neural Radiance Field with Quantization for Light Field Compression ⬇️
In this paper, we propose a novel light field compression method based on a Quantized Distilled Low Rank Neural Radiance Field (QDLR-NeRF) representation. While existing compression methods encode the set of light field sub-aperture images, our proposed method instead learns an implicit scene representation in the form of a Neural Radiance Field (NeRF), which also enables view synthesis. For reducing its size, the model is first learned under a Low Rank (LR) constraint using a Tensor Train (TT) decomposition in an Alternating Direction Method of Multipliers (ADMM) optimization framework. To further reduce the model size, the components of the tensor train decomposition need to be quantized. However, performing the optimization of the NeRF model by simultaneously taking the low rank constraint and the rate-constrained weight quantization into consideration is challenging. To deal with this difficulty, we introduce a network distillation operation that separates the low rank approximation and the weight quantization in the network training. The information from the initial LR constrained NeRF (LR-NeRF) is distilled to a model of a much smaller dimension (DLR-NeRF) based on the TT decomposition of the LR-NeRF. An optimized global codebook is then learned to quantize all TT components, producing the final QDLRNeRF. Experimental results show that our proposed method yields better compression efficiency compared with state-of-the-art methods, and it additionally has the advantage of allowing the synthesis of any light field view with a high quality.
86.Learning Feature Decomposition for Domain Adaptive Monocular Depth Estimation ⬇️
Monocular depth estimation (MDE) has attracted intense study due to its low cost and critical functions for robotic tasks such as localization, mapping and obstacle detection. Supervised approaches have led to great success with the advance of deep learning, but they rely on large quantities of ground-truth depth annotations that are expensive to acquire. Unsupervised domain adaptation (UDA) transfers knowledge from labeled source data to unlabeled target data, so as to relax the constraint of supervised learning. However, existing UDA approaches may not completely align the domain gap across different datasets because of the domain shift problem. We believe better domain alignment can be achieved via well-designed feature decomposition. In this paper, we propose a novel UDA method for MDE, referred to as Learning Feature Decomposition for Adaptation (LFDA), which learns to decompose the feature space into content and style components. LFDA only attempts to align the content component since it has a smaller domain gap. Meanwhile, it excludes the style component which is specific to the source domain from training the primary task. Furthermore, LFDA uses separate feature distribution estimations to further bridge the domain gap. Extensive experiments on three domain adaptative MDE scenarios show that the proposed method achieves superior accuracy and lower computational cost compared to the state-of-the-art approaches.
87.Learning Shadow Correspondence for Video Shadow Detection ⬇️
Video shadow detection aims to generate consistent shadow predictions among video frames. However, the current approaches suffer from inconsistent shadow predictions across frames, especially when the illumination and background textures change in a video. We make an observation that the inconsistent predictions are caused by the shadow feature inconsistency, i.e., the features of the same shadow regions show dissimilar proprieties among the nearby this http URL this paper, we present a novel Shadow-Consistent Correspondence method (SC-Cor) to enhance pixel-wise similarity of the specific shadow regions across frames for video shadow detection. Our proposed SC-Cor has three main advantages. Firstly, without requiring the dense pixel-to-pixel correspondence labels, SC-Cor can learn the pixel-wise correspondence across frames in a weakly-supervised manner. Secondly, SC-Cor considers intra-shadow separability, which is robust to the variant textures and illuminations in videos. Finally, SC-Cor is a plug-and-play module that can be easily integrated into existing shadow detectors with no extra computational cost. We further design a new evaluation metric to evaluate the temporal stability of the video shadow detection results. Experimental results show that SC-Cor outperforms the prior state-of-the-art method, by 6.51% on IoU and 3.35% on the newly introduced temporal stability metric.
88.Few-Shot Class-Incremental Learning from an Open-Set Perspective ⬇️
The continual appearance of new objects in the visual world poses considerable challenges for current deep learning methods in real-world deployments. The challenge of new task learning is often exacerbated by the scarcity of data for the new categories due to rarity or cost. Here we explore the important task of Few-Shot Class-Incremental Learning (FSCIL) and its extreme data scarcity condition of one-shot. An ideal FSCIL model needs to perform well on all classes, regardless of their presentation order or paucity of data. It also needs to be robust to open-set real-world conditions and be easily adapted to the new tasks that always arise in the field. In this paper, we first reevaluate the current task setting and propose a more comprehensive and practical setting for the FSCIL task. Then, inspired by the similarity of the goals for FSCIL and modern face recognition systems, we propose our method -- Augmented Angular Loss Incremental Classification or ALICE. In ALICE, instead of the commonly used cross-entropy loss, we propose to use the angular penalty loss to obtain well-clustered features. As the obtained features not only need to be compactly clustered but also diverse enough to maintain generalization for future incremental classes, we further discuss how class augmentation, data augmentation, and data balancing affect classification performance. Experiments on benchmark datasets, including CIFAR100, miniImageNet, and CUB200, demonstrate the improved performance of ALICE over the state-of-the-art FSCIL methods.
89.DAS: Densely-Anchored Sampling for Deep Metric Learning ⬇️
Deep Metric Learning (DML) serves to learn an embedding function to project semantically similar data into nearby embedding space and plays a vital role in many applications, such as image retrieval and face recognition. However, the performance of DML methods often highly depends on sampling methods to choose effective data from the embedding space in the training. In practice, the embeddings in the embedding space are obtained by some deep models, where the embedding space is often with barren area due to the absence of training points, resulting in so called "missing embedding" issue. This issue may impair the sample quality, which leads to degenerated DML performance. In this work, we investigate how to alleviate the "missing embedding" issue to improve the sampling quality and achieve effective DML. To this end, we propose a Densely-Anchored Sampling (DAS) scheme that considers the embedding with corresponding data point as "anchor" and exploits the anchor's nearby embedding space to densely produce embeddings without data points. Specifically, we propose to exploit the embedding space around single anchor with Discriminative Feature Scaling (DFS) and multiple anchors with Memorized Transformation Shifting (MTS). In this way, by combing the embeddings with and without data points, we are able to provide more embeddings to facilitate the sampling process thus boosting the performance of DML. Our method is effortlessly integrated into existing DML frameworks and improves them without bells and whistles. Extensive experiments on three benchmark datasets demonstrate the superiority of our method.
90.Adaptive Feature Fusion for Cooperative Perception using LiDAR Point Clouds ⬇️
Cooperative perception allows a Connected Autonomous Vehicle (CAV) to interact with the other CAVs in the vicinity to enhance perception of surrounding objects to increase safety and reliability. It can compensate for the limitations of the conventional vehicular perception such as blind spots, low resolution, and weather effects. An effective feature fusion model for the intermediate fusion methods of cooperative perception can improve feature selection and information aggregation to further enhance the perception accuracy. We propose adaptive feature fusion models with trainable feature selection modules. One of our proposed models Spatial-wise Adaptive feature Fusion (S-AdaFusion) outperforms all other state-of-the-art models on the two subsets of OPV2V dataset: default CARLA towns for vehicle detection and the Culver City for domain adaptation. In addition, previous studies have only tested cooperative perception for vehicle detection. A pedestrian, however, is much more likely to be seriously injured in a traffic accident. We evaluate the performance of cooperative perception for both vehicle and pedestrian detection using the CODD dataset. Our architecture achieves higher Average Precision (AP) than other existing models for both vehicle and pedestrian detection on the CODD dataset. The experiments demonstrate that cooperative perception also can improve the pedestrian detection accuracy compared to the conventional perception process.
91.Neural Correspondence Field for Object Pose Estimation ⬇️
We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image. Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum. The move from pixels to 3D points, which is inspired by recent PIFu-style methods for 3D reconstruction, enables reasoning about the whole object, including its (self-)occluded parts. For a 3D query point associated with a pixel-aligned image feature, we train a fully-connected neural network to predict: (i) the corresponding 3D object coordinates, and (ii) the signed distance to the object surface, with the first defined only for query points in the surface vicinity. We call the mapping realized by this network as Neural Correspondence Field. The object pose is then robustly estimated from the predicted 3D-3D correspondences by the Kabsch-RANSAC algorithm. The proposed method achieves state-of-the-art results on three BOP datasets and is shown superior especially in challenging cases with occlusion. The project website is at: this http URL.
92.Weakly Supervised Deep Instance Nuclei Detection using Points Annotation in 3D Cardiovascular Immunofluorescent Images ⬇️
Two major causes of death in the United States and worldwide are stroke and myocardial infarction. The underlying cause of both is thrombi released from ruptured or eroded unstable atherosclerotic plaques that occlude vessels in the heart (myocardial infarction) or the brain (stroke). Clinical studies show that plaque composition plays a more important role than lesion size in plaque rupture or erosion events. To determine the plaque composition, various cell types in 3D cardiovascular immunofluorescent images of plaque lesions are counted. However, counting these cells manually is expensive, time-consuming, and prone to human error. These challenges of manual counting motivate the need for an automated approach to localize and count the cells in images. The purpose of this study is to develop an automatic approach to accurately detect and count cells in 3D immunofluorescent images with minimal annotation effort. In this study, we used a weakly supervised learning approach to train the HoVer-Net segmentation model using point annotations to detect nuclei in fluorescent images. The advantage of using point annotations is that they require less effort as opposed to pixel-wise annotation. To train the HoVer-Net model using point annotations, we adopted a popularly used cluster labeling approach to transform point annotations into accurate binary masks of cell nuclei. Traditionally, these approaches have generated binary masks from point annotations, leaving a region around the object unlabeled (which is typically ignored during model training). However, these areas may contain important information that helps determine the boundary between cells. Therefore, we used the entropy minimization loss function in these areas to encourage the model to output more confident predictions on the unlabeled areas. Our comparison studies indicate that the HoVer-Net model trained using our weakly ...
93.Explicit Occlusion Reasoning for Multi-person 3D Human Pose Estimation ⬇️
Occlusion poses a great threat to monocular multi-person 3D human pose estimation due to large variability in terms of the shape, appearance, and position of occluders. While existing methods try to handle occlusion with pose priors/constraints, data augmentation, or implicit reasoning, they still fail to generalize to unseen poses or occlusion cases and may make large mistakes when multiple people are present. Inspired by the remarkable ability of humans to infer occluded joints from visible cues, we develop a method to explicitly model this process that significantly improves bottom-up multi-person human pose estimation with or without occlusions. First, we split the task into two subtasks: visible keypoints detection and occluded keypoints reasoning, and propose a Deeply Supervised Encoder Distillation (DSED) network to solve the second one. To train our model, we propose a Skeleton-guided human Shape Fitting (SSF) approach to generate pseudo occlusion labels on the existing datasets, enabling explicit occlusion reasoning. Experiments show that explicitly learning from occlusions improves human pose estimation. In addition, exploiting feature-level information of visible joints allows us to reason about occluded joints more accurately. Our method outperforms both the state-of-the-art top-down and bottom-up methods on several benchmarks.
94.Machine Learning and Computer Vision Techniques in Bee Monitoring Applications ⬇️
Machine learning and computer vision are dynamically growing fields, which have proven to be able to solve very complex tasks. They could also be used for the monitoring of the honeybee colonies and for the inspection of their health state, which could identify potentially dangerous states before the situation is critical, or to better plan periodic bee colony inspections and therefore save significant costs. In this paper, we present an overview of the state-of-the-art computer vision and machine learning applications used for bee monitoring. We also demonstrate the potential of those methods as an example of an automated bee counter algorithm. The paper is aimed at veterinary and apidology professionals and experts, who might not be familiar with machine learning to introduce to them its possibilities, therefore each family of applications is opened by a brief theoretical introduction and motivation related to its base method. We hope that this paper will inspire other scientists to use the machine learning techniques for other applications in bee monitoring.
95.UAVM: A Unified Model for Audio-Visual Learning ⬇️
Conventional audio-visual models have independent audio and video branches. We design a unified model for audio and video processing called Unified Audio-Visual Model (UAVM). In this paper, we describe UAVM, report its new state-of-the-art audio-visual event classification accuracy of 65.8% on VGGSound, and describe the intriguing properties of the model.
96.Generating Complex 4D Expression Transitions by Learning Face Landmark Trajectories ⬇️
In this work, we address the problem of 4D facial expressions generation. This is usually addressed by animating a neutral 3D face to reach an expression peak, and then get back to the neutral state. In the real world though, people show more complex expressions, and switch from one expression to another. We thus propose a new model that generates transitions between different expressions, and synthesizes long and composed 4D expressions. This involves three sub-problems: (i) modeling the temporal dynamics of expressions, (ii) learning transitions between them, and (iii) deforming a generic mesh. We propose to encode the temporal evolution of expressions using the motion of a set of 3D landmarks, that we learn to generate by training a manifold-valued GAN (Motion3DGAN). To allow the generation of composed expressions, this model accepts two labels encoding the starting and the ending expressions. The final sequence of meshes is generated by a Sparse2Dense mesh Decoder (S2D-Dec) that maps the landmark displacements to a dense, per-vertex displacement of a known mesh topology. By explicitly working with motion trajectories, the model is totally independent from the identity. Extensive experiments on five public datasets show that our proposed approach brings significant improvements with respect to previous solutions, while retaining good generalization to unseen data.
97.Paddy Leaf diseases identification on Infrared Images based on Convolutional Neural Networks ⬇️
Agriculture is the mainstay of human society because it is an essential need for every organism. Paddy cultivation is very significant so far as humans are concerned, largely in the Asian continent, and it is one of the staple foods. However, plant diseases in agriculture lead to depletion in productivity. Plant diseases are generally caused by pests, insects, and pathogens that decrease productivity to a large scale if not controlled within a particular time. Eventually, one cannot see an increase in paddy yield. Accurate and timely identification of plant diseases can help farmers mitigate losses due to pests and diseases. Recently, deep learning techniques have been used to identify paddy diseases and overcome these problems. This paper implements a convolutional neural network (CNN) based on a model and tests a public dataset consisting of 636 infrared image samples with five paddy disease classes and one healthy class. The proposed model proficiently identified and classified paddy diseases of five different types and achieved an accuracy of 88.28%
98.Testing Relational Understanding in Text-Guided Image Generation ⬇️
Relations are basic building blocks of human cognition. Classic and recent work suggests that many relations are early developing, and quickly perceived. Machine models that aspire to human-level perception and reasoning should reflect the ability to recognize and reason generatively about relations. We report a systematic empirical examination of a recent text-guided image generation model (DALL-E 2), using a set of 15 basic physical and social relations studied or proposed in the literature, and judgements from human participants (N = 169). Overall, we find that only ~22% of images matched basic relation prompts. Based on a quantitative examination of people's judgments, we suggest that current image generation models do not yet have a grasp of even basic relations involving simple objects and agents. We examine reasons for model successes and failures, and suggest possible improvements based on computations observed in biological intelligence.
99.HOB-CNN: Hallucination of Occluded Branches with a Convolutional Neural Network for 2D Fruit Trees ⬇️
Orchard automation has attracted the attention of researchers recently due to the shortage of global labor force. To automate tasks in orchards such as pruning, thinning, and harvesting, a detailed understanding of the tree structure is required. However, occlusions from foliage and fruits can make it challenging to predict the position of occluded trunks and branches. This work proposes a regression-based deep learning model, Hallucination of Occluded Branch Convolutional Neural Network (HOB-CNN), for tree branch position prediction in varying occluded conditions. We formulate tree branch position prediction as a regression problem towards the horizontal locations of the branch along the vertical direction or vice versa. We present comparative experiments on Y-shaped trees with two state-of-the-art baselines, representing common approaches to the problem. Experiments show that HOB-CNN outperform the baselines at predicting branch position and shows robustness against varying levels of occlusion. We further validated HOB-CNN against two different types of 2D trees, and HOB-CNN shows generalization across different trees and robustness under different occluded conditions.
100.FastGeodis: Fast Generalised Geodesic Distance Transform ⬇️
The FastGeodis package provides an efficient implementation for computing Geodesic and Euclidean distance transforms (or a mixture of both) targeting efficient utilisation of CPU and GPU hardwares. In particular, it implements paralellisable raster scan method from Criminisi et al, where elements in row (2D) or plane (3D) can be computed with parallel threads. This package is able to handle 2D as well as 3D data where it achieves up to 15x speed-up on CPU and up to 60x speed-up on GPU as compared to existing open-source libraries, which uses non-parallelisable single-thread CPU implementation. The performance speed-ups reported here were evaluated using 3D volume data on Nvidia GeForce Titan X (12 GB) with 6-Core Intel Xeon E5-1650 CPU. This package is available at: this https URL
101.Robust Change Detection Based on Neural Descriptor Fields ⬇️
The ability to reason about changes in the environment is crucial for robots operating over extended periods of time. Agents are expected to capture changes during operation so that actions can be followed to ensure a smooth progression of the working session. However, varying viewing angles and accumulated localization errors make it easy for robots to falsely detect changes in the surrounding world due to low observation overlap and drifted object associations. In this paper, based on the recently proposed category-level Neural Descriptor Fields (NDFs), we develop an object-level online change detection approach that is robust to partially overlapping observations and noisy localization results. Utilizing the shape completion capability and SE(3)-equivariance of NDFs, we represent objects with compact shape codes encoding full object shapes from partial observations. The objects are then organized in a spatial tree structure based on object centers recovered from NDFs for fast queries of object neighborhoods. By associating objects via shape code similarity and comparing local object-neighbor spatial layout, our proposed approach demonstrates robustness to low observation overlap and localization noises. We conduct experiments on both synthetic and real-world sequences and achieve improved change detection results compared to multiple baseline methods. Project webpage: this https URL
102.Fast Two-step Blind Optical Aberration Correction ⬇️
The optics of any camera degrades the sharpness of photographs, which is a key visual quality criterion. This degradation is characterized by the point-spread function (PSF), which depends on the wavelengths of light and is variable across the imaging field. In this paper, we propose a two-step scheme to correct optical aberrations in a single raw or JPEG image, i.e., without any prior information on the camera or lens. First, we estimate local Gaussian blur kernels for overlapping patches and sharpen them with a non-blind deblurring technique. Based on the measurements of the PSFs of dozens of lenses, these blur kernels are modeled as RGB Gaussians defined by seven parameters. Second, we remove the remaining lateral chromatic aberrations (not contemplated in the first step) with a convolutional neural network, trained to minimize the red/green and blue/green residual images. Experiments on both synthetic and real images show that the combination of these two stages yields a fast state-of-the-art blind optical aberration compensation technique that competes with commercial non-blind algorithms.
103.VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations ⬇️
The recent increase in popularity of volumetric representations for scene reconstruction and novel view synthesis has put renewed focus on animating volumetric content at high visual quality and in real-time. While implicit deformation methods based on learned functions can produce impressive results, they are `black boxes' to artists and content creators, they require large amounts of training data to generalise meaningfully, and they do not produce realistic extrapolations outside the training data. In this work we solve these issues by introducing a volume deformation method which is real-time, easy to edit with off-the-shelf software and can extrapolate convincingly. To demonstrate the versatility of our method, we apply it in two scenarios: physics-based object deformation and telepresence where avatars are controlled using blendshapes. We also perform thorough experiments showing that our method compares favourably to both volumetric approaches combined with implicit deformation and methods based on mesh deformation.
104.Joint covariate-alignment and concept-alignment: a framework for domain generalization ⬇️
In this paper, we propose a novel domain generalization (DG) framework based on a new upper bound to the risk on the unseen domain. Particularly, our framework proposes to jointly minimize both the covariate-shift as well as the concept-shift between the seen domains for a better performance on the unseen domain. While the proposed approach can be implemented via an arbitrary combination of covariate-alignment and concept-alignment modules, in this work we use well-established approaches for distributional alignment namely, Maximum Mean Discrepancy (MMD) and covariance Alignment (CORAL), and use an Invariant Risk Minimization (IRM)-based approach for concept alignment. Our numerical results show that the proposed methods perform as well as or better than the state-of-the-art for domain generalization on several data sets.
105.Attacking Adversarial Defences by Smoothing the Loss Landscape ⬇️
This paper investigates a family of methods for defending against adversarial attacks that owe part of their success to creating a noisy, discontinuous, or otherwise rugged loss landscape that adversaries find difficult to navigate. A common, but not universal, way to achieve this effect is via the use of stochastic neural networks. We show that this is a form of gradient obfuscation, and propose a general extension to gradient-based adversaries based on the Weierstrass transform, which smooths the surface of the loss function and provides more reliable gradient estimates. We further show that the same principle can strengthen gradient-free adversaries. We demonstrate the efficacy of our loss-smoothing method against both stochastic and non-stochastic adversarial defences that exhibit robustness due to this type of obfuscation. Furthermore, we provide analysis of how it interacts with Expectation over Transformation; a popular gradient-sampling method currently used to attack stochastic defences.
106.Dynamic Batch Adaptation ⬇️
Current deep learning adaptive optimizer methods adjust the step magnitude of parameter updates by altering the effective learning rate used by each parameter. Motivated by the known inverse relation between batch size and learning rate on update step magnitudes, we introduce a novel training procedure that dynamically decides the dimension and the composition of the current update step. Our procedure, Dynamic Batch Adaptation (DBA) analyzes the gradients of every sample and selects the subset that best improves certain metrics such as gradient variance for each layer of the network. We present results showing DBA significantly improves the speed of model convergence. Additionally, we find that DBA produces an increased improvement over standard optimizers when used in data scarce conditions where, in addition to convergence speed, it also significantly improves model generalization, managing to train a network with a single fully connected hidden layer using only 1% of the MNIST dataset to reach 97.79% test accuracy. In an even more extreme scenario, it manages to reach 97.44% test accuracy using only 10 samples per class. These results represent a relative error rate reduction of 81.78% and 88.07% respectively, compared to the standard optimizers, Stochastic Gradient Descent (SGD) and Adam.
107.Deep COVID-19 Recognition using Chest X-ray Images: A Comparative Analysis ⬇️
The novel coronavirus variant, which is also widely known as COVID-19, is currently a common threat to all humans across the world. Effective recognition of COVID-19 using advanced machine learning methods is a timely need. Although many sophisticated approaches have been proposed in the recent past, they still struggle to achieve expected performances in recognizing COVID-19 using chest X-ray images. In addition, the majority of them are involved with the complex pre-processing task, which is often challenging and time-consuming. Meanwhile, deep networks are end-to-end and have shown promising results in image-based recognition tasks during the last decade. Hence, in this work, some widely used state-of-the-art deep networks are evaluated for COVID-19 recognition with chest X-ray images. All the deep networks are evaluated on a publicly available chest X-ray image dataset. The evaluation results show that the deep networks can effectively recognize COVID-19 from chest X-ray images. Further, the comparison results reveal that the EfficientNetB7 network outperformed other existing state-of-the-art techniques.
108.Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi-Hot Class Embedding ⬇️
Synthesizing multi-character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi-character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi-Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth-based) and high-quality (MoCap-based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state-of-the-art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area. The code is available at this https URL
109.Brain Tumor Diagnosis and Classification via Pre-Trained Convolutional Neural Networks ⬇️
The brain tumor is the most aggressive kind of tumor and can cause low life expectancy if diagnosed at the later stages. Manual identification of brain tumors is tedious and prone to errors. Misdiagnosis can lead to false treatment and thus reduce the chances of survival for the patient. Medical resonance imaging (MRI) is the conventional method used to diagnose brain tumors and their types. This paper attempts to eliminate the manual process from the diagnosis process and use machine learning instead. We proposed the use of pretrained convolutional neural networks (CNN) for the diagnosis and classification of brain tumors. Three types of tumors were classified with one class of non-tumor MRI images. Networks that has been used are ResNet50, EfficientNetB1, EfficientNetB7, EfficientNetV2B1. EfficientNet has shown promising results due to its scalable nature. EfficientNetB1 showed the best results with training and validation accuracy of 87.67% and 89.55%, respectively.
110.Tutorial on the development of AI models for medical image analysis ⬇️
The idea of using computers to read medical scans was introduced as early as 1966. However, limits to machine learning technology meant progress was slow initially. The Alexnet breakthrough in 2012 sparked new interest in the topic, which resulted in the release of 100s of medical AI solutions on the market. In spite of success for some diseases and modalities, many challenges remain. Research typically focuses on the development of specific applications or techniques, clinical evaluation, or meta analysis of clinical studies or techniques through surveys or challenges. However, limited attention has been given to the development process of improving real world performance. In this tutorial, we address the latter and discuss some techniques to conduct the development process in order to make this as efficient as possible.
111.TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation ⬇️
Convolutional neural networks (CNNs) have been the de facto standard in a diverse set of computer vision tasks for many years. Especially, deep neural networks based on seminal architectures such as U-shaped models with skip-connections or atrous convolution with pyramid pooling have been tailored to a wide range of medical image analysis tasks. The main advantage of such architectures is that they are prone to detaining versatile local features. However, as a general consensus, CNNs fail to capture long-range dependencies and spatial correlations due to the intrinsic property of confined receptive field size of convolution operations. Alternatively, Transformer, profiting from global information modelling that stems from the self-attention mechanism, has recently attained remarkable performance in natural language processing and computer vision. Nevertheless, previous studies prove that both local and global features are critical for a deep model in dense prediction, such as segmenting complicated structures with disparate shapes and configurations. To this end, this paper proposes TransDeepLab, a novel DeepLab-like pure Transformer for medical image segmentation. Specifically, we exploit hierarchical Swin-Transformer with shifted windows to extend the DeepLabv3 and model the Atrous Spatial Pyramid Pooling (ASPP) module. A thorough search of the relevant literature yielded that we are the first to model the seminal DeepLab model with a pure Transformer-based model. Extensive experiments on various medical image segmentation tasks verify that our approach performs superior or on par with most contemporary works on an amalgamation of Vision Transformer and CNN-based methods, along with a significant reduction of model complexity. The codes and trained models are publicly available at this https URL
112.UniToBrain dataset: a Brain Perfusion Dataset ⬇️
The CT perfusion (CTP) is a medical exam for measuring the passage of a bolus of contrast solution through the brain on a pixel-by-pixel basis. The objective is to draw "perfusion maps" (namely cerebral blood volume, cerebral blood flow and time to peak) very rapidly for ischemic lesions, and to be able to distinguish between core and penumubra regions. A precise and quick diagnosis, in a context of ischemic stroke, can determine the fate of the brain tissues and guide the intervention and treatment in emergency conditions. In this work we present UniToBrain dataset, the very first open-source dataset for CTP. It comprises a cohort of more than a hundred of patients, and it is accompanied by patients metadata and ground truth maps obtained with state-of-the-art algorithms. We also propose a novel neural networks-based algorithm, using the European library ECVL and EDDL for the image processing and developing deep learning models respectively. The results obtained by the neural network models match the ground truth and open the road towards potential sub-sampling of the required number of CT maps, which impose heavy radiation doses to the patients.
113.Lung nodules segmentation from CT with DeepHealth toolkit ⬇️
The accurate and consistent border segmentation plays an important role in the tumor volume estimation and its treatment in the field of Medical Image Segmentation. Globally, Lung cancer is one of the leading causes of death and the early detection of lung nodules is essential for the early cancer diagnosis and survival rate of patients. The goal of this study was to demonstrate the feasibility of Deephealth toolkit including PyECVL and PyEDDL libraries to precisely segment lung nodules. Experiments for lung nodules segmentation has been carried out on UniToChest using PyECVL and PyEDDL, for data pre-processing as well as neural network training. The results depict accurate segmentation of lung nodules across a wide diameter range and better accuracy over a traditional detection approach. The datasets and the code used in this paper are publicly available as a baseline reference.
114.XOOD: Extreme Value Based Out-Of-Distribution Detection For Image Classification ⬇️
Detecting out-of-distribution (OOD) data at inference time is crucial for many applications of machine learning. We present XOOD: a novel extreme value-based OOD detection framework for image classification that consists of two algorithms. The first, XOOD-M, is completely unsupervised, while the second XOOD-L is self-supervised. Both algorithms rely on the signals captured by the extreme values of the data in the activation layers of the neural network in order to distinguish between in-distribution and OOD instances. We show experimentally that both XOOD-M and XOOD-L outperform state-of-the-art OOD detection methods on many benchmark data sets in both efficiency and accuracy, reducing false-positive rate (FPR95) by 50%, while improving the inferencing time by an order of magnitude.
115.Software Package for Automated Analysis of Lung Ultrasound Videos ⬇️
In the recent past with the rapid surge of COVID-19 infections, lung ultrasound has emerged as a fast and powerful diagnostic tool particularly for continuous and periodic monitoring of the lung. There have been many attempts towards severity classification, segmentation and detection of key landmarks in the lung. Leveraging the progress, an automated lung ultrasound video analysis package is presented in this work, which can provide summary of key frames in the video, flagging of the key frames with lung infection and options to automatically detect and segment the lung landmarks. The integrated package is implemented as an open-source web application and available in the link this https URL.
116.Breast Cancer Classification Based on Histopathological Images Using a Deep Learning Capsule Network ⬇️
Breast cancer is one of the most serious types of cancer that can occur in women. The automatic diagnosis of breast cancer by analyzing histological images (HIs) is important for patients and their prognosis. The classification of HIs provides clinicians with an accurate understanding of diseases and allows them to treat patients more efficiently. Deep learning (DL) approaches have been successfully employed in a variety of fields, particularly medical imaging, due to their capacity to extract features automatically. This study aims to classify different types of breast cancer using HIs. In this research, we present an enhanced capsule network that extracts multi-scale features using the Res2Net block and four additional convolutional layers. Furthermore, the proposed method has fewer parameters due to using small convolutional kernels and the Res2Net block. As a result, the new method outperforms the old ones since it automatically learns the best possible features. The testing results show that the model outperformed the previous DL methods.
117.An Enhanced Deep Learning Technique for Prostate Cancer Identification Based on MRI Scans ⬇️
Prostate cancer is the most dangerous cancer diagnosed in men worldwide. Prostate diagnosis has been affected by many factors, such as lesion complexity, observer visibility, and variability. Many techniques based on Magnetic Resonance Imaging (MRI) have been used for prostate cancer identification and classification in the last few decades. Developing these techniques is crucial and has a great medical effect because they improve the treatment benefits and the chance of patients' survival. A new technique that depends on MRI has been proposed to improve the diagnosis. This technique consists of two stages. First, the MRI images have been preprocessed to make the medical image more suitable for the detection step. Second, prostate cancer identification has been performed based on a pre-trained deep learning model, InceptionResNetV2, that has many advantages and achieves effective results. In this paper, the InceptionResNetV2 deep learning model used for this purpose has average accuracy equals to 89.20%, and the area under the curve (AUC) equals to 93.6%. The experimental results of this proposed new deep learning technique represent promising and effective results compared to other previous techniques.
118.Deep Active Learning with Budget Annotation ⬇️
Digital data collected over the decades and data currently being produced with use of information technology is vastly the unlabeled data or data without description. The unlabeled data is relatively easy to acquire but expensive to label even with use of domain experts. Most of the recent works focus on use of active learning with uncertainty metrics measure to address this problem. Although most uncertainty selection strategies are very effective, they fail to take informativeness of the unlabeled instances into account and are prone to querying outliers. In order to address these challenges we propose an hybrid approach of computing both the uncertainty and informativeness of an instance, then automaticaly label the computed instances using budget annotator. To reduce the annotation cost, we employ the state-of-the-art pre-trained models in order to avoid querying information already contained in those models. Our extensive experiments on different sets of datasets demonstrate the efficacy of the proposed approach.
119.One Object at a Time: Accurate and Robust Structure From Motion for Robots ⬇️
A gaze-fixating robot perceives distance to the fixated object and relative positions of surrounding objects immediately, accurately, and robustly. We show how fixation, which is the act of looking at one object while moving, exploits regularities in the geometry of 3D space to obtain this information. These regularities introduce rotation-translation couplings that are not commonly used in structure from motion. To validate, we use a Franka Emika Robot with an RGB camera. We a) find that error in distance estimate is less than 5 mm at a distance of 15 cm, and b) show how relative position can be used to find obstacles under challenging scenarios. We combine accurate distance estimates and obstacle information into a reactive robot behavior that is able to pick up objects of unknown size, while impeded by unforeseen obstacles.
120.Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging ⬇️
Generalizability of deep learning models may be severely affected by the difference in the distributions of the train (source domain) and the test (target domain) sets, e.g., when the sets are produced by different hardware. As a consequence of this domain shift, a certain model might perform well on data from one clinic, and then fail when deployed in another. We propose a very light and transparent approach to perform test-time domain adaptation. The idea is to substitute the target low-frequency Fourier space components that are deemed to reflect the style of an image. To maximize the performance, we implement the "optimal style donor" selection technique, and use a number of source data points for altering a single target scan appearance (Multi-Source Transferring). We study the effect of severity of domain shift on the performance of the method, and show that our training-free approach reaches the state-of-the-art level of complicated deep domain adaptation models. The code for our experiments is released.
121.DA$^2$ Dataset: Toward Dexterity-Aware Dual-Arm Grasping ⬇️
In this paper, we introduce DA$^2$, the first large-scale dual-arm dexterity-aware dataset for the generation of optimal bimanual grasping pairs for arbitrary large objects. The dataset contains about 9M pairs of parallel-jaw grasps, generated from more than 6000 objects and each labeled with various grasp dexterity measures. In addition, we propose an end-to-end dual-arm grasp evaluation model trained on the rendered scenes from this dataset. We utilize the evaluation model as our baseline to show the value of this novel and nontrivial dataset by both online analysis and real robot experiments. All data and related code will be open-sourced at this https URL.
122.Speckle2Speckle: Unsupervised Learning of Ultrasound Speckle Filtering Without Clean Data ⬇️
In ultrasound imaging the appearance of homogeneous regions of tissue is subject to speckle, which for certain applications can make the detection of tissue irregularities difficult. To cope with this, it is common practice to apply speckle reduction filters to the images. Most conventional filtering techniques are fairly hand-crafted and often need to be finely tuned to the present hardware, imaging scheme and application. Learning based techniques on the other hand suffer from the need for a target image for training (in case of fully supervised techniques) or require narrow, complex physics-based models of the speckle appearance that might not apply in all cases. With this work we propose a deep-learning based method for speckle removal without these limitations. To enable this, we make use of realistic ultrasound simulation techniques that allow for instantiation of several independent speckle realizations that represent the exact same tissue, thus allowing for the application of image reconstruction techniques that work with pairs of differently corrupted data. Compared to two other state-of-the-art approaches (non-local means and the Optimized Bayesian non-local means filter) our method performs favorably in qualitative comparisons and quantitative evaluation, despite being trained on simulations alone, and is several orders of magnitude faster.
123.Robotic Dough Shaping ⬇️
We address the problem of shaping a piece of dough-like deformable material into a 2D target shape presented upfront. We use a 6 degree-of-freedom WidowX-250 Robot Arm equipped with a rolling pin and information collected from an RGB-D camera and a tactile sensor. We present and compare several control policies, including a dough shrinking action, in extensive experiments across three kinds of deformable materials and across three target dough shape sizes, achieving the intersection over union (IoU) of 0.90. Our results show that: i) rolling dough from the highest dough point is more efficient than from the 2D/3D dough centroid; ii) it might be better to stop the roll movement at the current dough boundary as opposed to the target shape outline; iii) the shrink action might be beneficial only if properly tuned with respect to the exapand action; and iv) the Play-Doh material is easier to shape to a target shape as compared to Plasticine or Kinetic sand. Video demonstrations of our work are available at this https URL
124.enpheeph: A Fault Injection Framework for Spiking and Compressed Deep Neural Networks ⬇️
Research on Deep Neural Networks (DNNs) has focused on improving performance and accuracy for real-world deployments, leading to new models, such as Spiking Neural Networks (SNNs), and optimization techniques, e.g., quantization and pruning for compressed networks. However, the deployment of these innovative models and optimization techniques introduces possible reliability issues, which is a pillar for DNNs to be widely used in safety-critical applications, e.g., autonomous driving. Moreover, scaling technology nodes have the associated risk of multiple faults happening at the same time, a possibility not addressed in state-of-the-art resiliency analyses.
Towards better reliability analysis for DNNs, we present enpheeph, a Fault Injection Framework for Spiking and Compressed DNNs. The enpheeph framework enables optimized execution on specialized hardware devices, e.g., GPUs, while providing complete customizability to investigate different fault models, emulating various reliability constraints and use-cases. Hence, the faults can be executed on SNNs as well as compressed networks with minimal-to-none modifications to the underlying code, a feat that is not achievable by other state-of-the-art tools.
To evaluate our enpheeph framework, we analyze the resiliency of different DNN and SNN models, with different compression techniques. By injecting a random and increasing number of faults, we show that DNNs can show a reduction in accuracy with a fault rate as low as 7 x 10 ^ (-7) faults per parameter, with an accuracy drop higher than 40%. Run-time overhead when executing enpheeph is less than 20% of the baseline execution time when executing 100 000 faults concurrently, at least 10x lower than state-of-the-art frameworks, making enpheeph future-proof for complex fault injection scenarios.
We release enpheeph at this https URL.
125.Delving into Effective Gradient Matching for Dataset Condensation ⬇️
As deep learning models and datasets rapidly scale up, network training is extremely time-consuming and resource-costly. Instead of training on the entire dataset, learning with a small synthetic dataset becomes an efficient solution. Extensive research has been explored in the direction of dataset condensation, among which gradient matching achieves state-of-the-art performance. The gradient matching method directly targets the training dynamics by matching the gradient when training on the original and synthetic datasets. However, there are limited deep investigations into the principle and effectiveness of this method. In this work, we delve into the gradient matching method from a comprehensive perspective and answer the critical questions of what, how, and where to match. We propose to match the multi-level gradients to involve both intra-class and inter-class gradient information. We demonstrate that the distance function should focus on the angle, considering the magnitude simultaneously to delay the overfitting. An overfitting-aware adaptive learning step strategy is also proposed to trim unnecessary optimization steps for algorithmic efficiency improvement. Ablation and comparison experiments demonstrate that our proposed methodology shows superior accuracy, efficiency, and generalization compared to prior work.
126.LRIP-Net: Low-Resolution Image Prior based Network for Limited-Angle CT Reconstruction ⬇️
In the practical applications of computed tomography imaging, the projection data may be acquired within a limited-angle range and corrupted by noises due to the limitation of scanning conditions. The noisy incomplete projection data results in the ill-posedness of the inverse problems. In this work, we theoretically verify that the low-resolution reconstruction problem has better numerical stability than the high-resolution problem. In what follows, a novel low-resolution image prior based CT reconstruction model is proposed to make use of the low-resolution image to improve the reconstruction quality. More specifically, we build up a low-resolution reconstruction problem on the down-sampled projection data, and use the reconstructed low-resolution image as prior knowledge for the original limited-angle CT problem. We solve the constrained minimization problem by the alternating direction method with all subproblems approximated by the convolutional neural networks. Numerical experiments demonstrate that our double-resolution network outperforms both the variational method and popular learning-based reconstruction methods on noisy limited-angle reconstruction problems.
127.Temporal extrapolation of heart wall segmentation in cardiac magnetic resonance images via pixel tracking ⬇️
In this study, we have tailored a pixel tracking method for temporal extrapolation of the ventricular segmentation masks in cardiac magnetic resonance images. The pixel tracking process starts from the end-diastolic frame of the heart cycle using the available manually segmented images to predict the end-systolic segmentation mask. The superpixels approach is used to divide the raw images into smaller cells and in each time frame, new labels are assigned to the image cells which leads to tracking the movement of the heart wall elements through different frames. The tracked masks at the end of systole are compared with the already available manually segmented masks and dice scores are found to be between 0.81 to 0.84. Considering the fact that the proposed method does not necessarily require a training dataset, it could be an attractive alternative approach to deep learning segmentation methods in scenarios where training data are limited.
128.Resolution enhancement of placenta histological images using deep learning ⬇️
In this study, a method has been developed to improve the resolution of histological human placenta images. For this purpose, a paired series of high- and low-resolution images have been collected to train a deep neural network model that can predict image residuals required to improve the resolution of the input images. A modified version of the U-net neural network model has been tailored to find the relationship between the low resolution and residual images. After training for 900 epochs on an augmented dataset of 1000 images, the relative mean squared error of 0.003 is achieved for the prediction of 320 test images. The proposed method has not only improved the contrast of the low-resolution images at the edges of cells but added critical details and textures that mimic high-resolution images of placenta villous space.
129.Robust Trajectory Prediction against Adversarial Attacks ⬇️
Trajectory prediction using deep neural networks (DNNs) is an essential component of autonomous driving (AD) systems. However, these methods are vulnerable to adversarial attacks, leading to serious consequences such as collisions. In this work, we identify two key ingredients to defend trajectory prediction models against adversarial attacks including (1) designing effective adversarial training methods and (2) adding domain-specific data augmentation to mitigate the performance degradation on clean data. We demonstrate that our method is able to improve the performance by 46% on adversarial data and at the cost of only 3% performance degradation on clean data, compared to the model trained with clean data. Additionally, compared to existing robust methods, our method can improve performance by 21% on adversarial examples and 9% on clean data. Our robust model is evaluated with a planner to study its downstream impacts. We demonstrate that our model can significantly reduce the severe accident rates (e.g., collisions and off-road driving).
130.Low-complexity Approximate Convolutional Neural Networks ⬇️
In this paper, we present an approach for minimizing the computational complexity of trained Convolutional Neural Networks (ConvNet). The idea is to approximate all elements of a given ConvNet and replace the original convolutional filters and parameters (pooling and bias coefficients; and activation function) with efficient approximations capable of extreme reductions in computational complexity. Low-complexity convolution filters are obtained through a binary (zero-one) linear programming scheme based on the Frobenius norm over sets of dyadic rationals. The resulting matrices allow for multiplication-free computations requiring only addition and bit-shifting operations. Such low-complexity structures pave the way for low-power, efficient hardware designs. We applied our approach on three use cases of different complexity: (i) a "light" but efficient ConvNet for face detection (with around 1000 parameters); (ii) another one for hand-written digit classification (with more than 180000 parameters); and (iii) a significantly larger ConvNet: AlexNet with $\approx$1.2 million matrices. We evaluated the overall performance on the respective tasks for different levels of approximations. In all considered applications, very low-complexity approximations have been derived maintaining an almost equal classification performance.
131.MulViMotion: Shape-aware 3D Myocardial Motion Tracking from Multi-View Cardiac MRI ⬇️
Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.
132.A review of Deep learning Techniques for COVID-19 identification on Chest CT images ⬇️
The current COVID-19 pandemic is a serious threat to humanity that directly affects the lungs. Automatic identification of COVID-19 is a challenge for health care officials. The standard gold method for diagnosing COVID-19 is Reverse Transcription Polymerase Chain Reaction (RT-PCR) to collect swabs from affected people. Some limitations encountered while collecting swabs are related to accuracy and longtime duration. Chest CT (Computed Tomography) is another test method that helps healthcare providers quickly identify the infected lung areas. It was used as a supporting tool for identifying COVID-19 in an earlier stage. With the help of deep learning, the CT imaging characteristics of COVID-19. Researchers have proven it to be highly effective for COVID-19 CT image classification. In this study, we review the recent deep learning techniques that can use to detect the COVID-19 disease. Relevant studies were collected by various databases such as Web of Science, Google Scholar, and PubMed. Finally, we compare the results of different deep learning models, and CT image analysis is discussed.