-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathserver.js
233 lines (191 loc) · 6.51 KB
/
server.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
'use strict';
const fs = require('fs');
// require("@tensorflow/tfjs-node");
const use = require("@tensorflow-models/universal-sentence-encoder");
const express = require('express');
const app = express();
if (!process.env.DISABLE_XORIGIN) {
app.use(function(req, res, next) {
var allowedOrigins = ['https://narrow-plane.gomix.me', 'https://www.freecodecamp.com'];
var origin = req.headers.origin || '*';
if(!process.env.XORIG_RESTRICT || allowedOrigins.indexOf(origin) > -1){
console.log(origin);
res.setHeader('Access-Control-Allow-Origin', origin);
res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type, Accept");
}
next();
});
}
app.use('/public', express.static(process.cwd() + '/public'));
app.route('/:unknownWord').get(function(req, res, next) {
// get request parameter data
let unknownWord = req.params.unknownWord;
console.log('some kind of custom unknown word', unknownWord);
unknownWord = unknownWord.toLowerCase();
unknownWord = unknownWord.replace(/ /g, '').replace(/\[/g, '').replace(/\]/g, '');
// set up response data
const outputData = {
missingWord: unknownWord,
suggestions: []
};
// get dictionary before translate
fs.readFile('embeddings.txt', 'utf8', async function (err,data) {
if (err) {
return console.log(err);
}
if (!unknownWord) {
res.type('json').send(outputData);
return; // exit early
}
// just get closest 5 matches to the unknown word:
const mostSimilarWords = await useModel(unknownWord);
outputData.suggestions = mostSimilarWords;
console.log(outputData);
// finally return JSON response
res.type('json').send(outputData);
});
});
app.route('/').get(function(req, res) {
res.sendFile(process.cwd() + '/views/index.html');
})
// Respond not found to all the wrong routes
app.use(function(req, res, next){
res.status(404);
res.type('txt').send('404: Not found');
});
// Error Middleware
app.use(function(err, req, res, next) {
if(err) {
res.status(err.status || 500)
.type('txt')
.send(err.message || 'SERVER ERROR');
}
})
app.listen(process.env.PORT, function () {
console.log('Node.js listening ...');
});
// custom function(s):
function createDictionary(str) { // creates a "hash table" for faster searching
var ht = {};
var l = str.split('\n');
for (var i in l) {
var entry = l[i].split(',');
var eng = entry[1];
var cog = entry[0];
var typ = entry[entry.length-1];
ht[eng] = {'cog':cog,'type':typ};
}
return ht;
}
function getShortForm(cog) {
var vowels = 'aeiou';
var indexStopBefore = cog.length;
var vowelCount = 0;
for (var i in cog) {
var letter = cog[i];
if (vowels.includes(letter)) {
vowelCount += 1;
if (vowelCount >= 2) {
// index2ndLastVowel = parseInt(i)+1; break;
if (cog[parseInt(i)+1] !== null) {
if (vowels.includes(cog[parseInt(i)+1])) {
indexStopBefore = parseInt(i)+1;
} else {
indexStopBefore = parseInt(i)+2;
}
break;
}
}
}
}
return cog.slice(0,indexStopBefore);
}
// Tensorflow.js stuff:
async function useModel(inputWord) {
// uses Universal Sentence Encoder (U.S.E.):
const mostSimilarWords = await use.load().then(async (model) => {
return await getEmbedding(model, inputWord);
});
return mostSimilarWords;
}
function getEmbedding(model, inputWord) {
return model
.embed([inputWord])
.then((inputEmbeddings) => {
const embeds = inputEmbeddings.arraySync();
const wordEmbedding = embeds[0];
const embedsData = readFile("embeddings.txt");
const lines = embedsData.split("\n");
if (lines.length === 0) return []; // exit if no data
const similarities = getAllSimilarityScores(wordEmbedding, embedsData);
const top5 = getTop5Similarities(similarities);
const englishData = readFile("out_english.txt");
const mostSimilarWords = getMostSimilarWordsFromFile(top5, englishData);
// console.log(mostSimilarWords);
return mostSimilarWords;
})
.catch((err) => {
console.log(err);
return [];
});
}
function readFile(filePath) {
return fs.readFileSync(filePath, "utf8");
}
function getAllSimilarityScores(wordEmbedding, data) {
const lines = data.split("\n");
if (lines.length === 0) return []; // exit if no data
const similarities = []; // TODO: use a max heap instead? Reference: https://github.com/hchiam/learning-google-closure-library/blob/master/goog-closure-example.js
for (let index = 0; index < lines.length; index++) {
const line = lines[index];
const referenceEmbedding = line.split(",").map((n) => Number(n));
if (referenceEmbedding.length === 0) continue; // skip empty line
const similarity = getSimilarityPercent(wordEmbedding, referenceEmbedding);
similarities.push({ similarity, index });
}
// console.log("similarities.length: " + similarities.length);
return similarities;
}
function getSimilarityPercent(wordEmbedding, referenceEmbedding) {
const similarity = cosineSimilarity(wordEmbedding, referenceEmbedding);
// cosine similarity -> % when doing text comparison, since cannot have -ve term frequencies: https://en.wikipedia.org/wiki/Cosine_similarity
return similarity;
}
function cosineSimilarity(a, b) {
// https://towardsdatascience.com/how-to-build-a-textual-similarity-analysis-web-app-aa3139d4fb71
const magnitudeA = Math.sqrt(dotProduct(a, a));
const magnitudeB = Math.sqrt(dotProduct(b, b));
if (magnitudeA && magnitudeB) {
// https://towardsdatascience.com/how-to-measure-distances-in-machine-learning-13a396aa34ce
return dotProduct(a, b) / (magnitudeA * magnitudeB);
} else {
return 0;
}
}
function dotProduct(a, b) {
let sum = 0;
for (let i = 0; i < a.length; i++) {
sum += a[i] * b[i];
}
return sum;
}
function getTop5Similarities(similarities) {
return similarities
.sort(function descending(a, b) {
return b.similarity - a.similarity;
})
.slice(0, 5);
// console.log("top 5 similar indices: " + top5.map((x) => x.index));
// console.log("top 5 similarities: " + top5.map((x) => x.similarity));
}
function getMostSimilarWordsFromFile(top5, data) {
const mostSimilarWords = [];
const lines = data.split("\n");
top5.forEach((similarity) => {
const index = similarity.index;
const word = lines[index];
mostSimilarWords.push(word);
});
// console.log("most similar words: " + mostSimilarWords);
return mostSimilarWords;
}