-
Notifications
You must be signed in to change notification settings - Fork 0
/
cholesky.html
79 lines (79 loc) · 3.19 KB
/
cholesky.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width" />
<link rel="shortcut icon" href="favicon.ico" />
<script type="text/javascript" async src="fonts-min.js"></script>
<link rel="stylesheet" href="style.css" />
<meta charset="utf-8">
<meta name="description" content="We use computing power of general-purpose
GPUs to accelerate a dense linear algebra routine known as Cholesky
decomposition." />
<title>
An efficient out-of-core implementation of block Cholesky decomposition on
a multi-GPU system
</title>
</head>
<body>
<div id="container" itemscope
itemtype="http://www.schema.org/ScholarlyArticle">
<p>[<a href=".">← Go back to profile</a>]</p>
<h1 itemprop="name">An efficient out-of-core implementation of block
Cholesky decomposition on a multi-GPU system</h1>
<p>
with
<a href="http://internet2.trincoll.edu/facProfiles/Default.aspx?fid=1335119">
Lin Cheng</a>,
<a href="http://turing.cs.trincoll.edu/~pyoon/">Peter Yoon</a> and
<a href="http://www.linkedin.com/pub/jiajia-zhao/34/a32/8ab">Jiajia Zhao</a>
</p>
<p>
Paper presented at
<a href="http://www.iasted.org/conferences/pastinfo-789.html">IASTED
PDCS</a>
(2012)<br>
Poster presented at <a href="https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=14633">IEEE EMBS</a>
(2012)
</p>
<h2>Download</h2>
<ul>
<li>IASTED PDCS talk:
[<a href="talks/cholesky_talk.pptx">PPTX</a>]
[<a href="talks/cholesky_talk.pdf">PDF</a>]</li>
<li>IASTED PDCS paper:
[<a href="http://www.actapress.com/PaperInfo.aspx?PaperID=454758">Abstract</a>]
[<a href="preprints/cholesky_iasted.pdf">Paper</a>]
</li>
</ul>
<h2>Synopsis</h2>
<p itemprop="description">We use computing power of general-purpose
GPUs to accelerate a dense linear algebra routine known as <strong>
Cholesky decomposition</strong>. Our implementation eliminates the
limitation in memory space by storing the system matrix in hard disk
and loading only parts of it into main memory.
</p>
<h2>Publication Details</h2>
<ul>
<li>
Conference Paper:<br>
Lin Cheng, Hyunsu Cho, Peter Yoon, and Jiajia
Zhao. “An Efficient Out-of-Core Implementation of Block
Cholesky Decomposition on a Multi-GPU System,”
<em>Proceedings of the 24th IASTED International Conference:
Parallel and Distributed Computing and Systems</em>, Las Vegas,
NV, November 13, 2012.
</li>
<li>
Poster:<br>
Lin Cheng, Hyunsu Cho, Peter Yoon, and Jiajia Zhao. “A
Multi-GPU Implementation of Incomplete Cholesky Decomposition for
Image Segmentation,”
<em>The 34th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society</em>,
San Diego, CA, August 30, 2012.
</li>
</ul>
<p>[<a href=".">← Go back to profile</a>]</p>
</div>
</body>
</html>