-
Notifications
You must be signed in to change notification settings - Fork 0
/
eigenmap_gpu.html
87 lines (87 loc) · 3.41 KB
/
eigenmap_gpu.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width" />
<link rel="shortcut icon" href="favicon.ico" />
<script type="text/javascript" async src="fonts-min.js"></script>
<link rel="stylesheet" href="style.css" />
<meta charset="utf-8">
<meta name="description" content="Laplacian eigenmap is an image
segmentation algorithm that began to gain traction in recent years. We make
use of general-purpose GPUs to accelerate the algorithm." />
<title>
GPU accelerated vessel segmentation using Laplacian eigenmaps
</title>
</head>
<body>
<div id="container" itemscope
itemtype="http://www.schema.org/ScholarlyArticle">
<p>[<a href=".">← Go back to profile</a>]</p>
<h1 itemprop="name">GPU accelerated vessel segmentation using
Laplacian eigenmaps</h1>
<p>
with
<a href="http://internet2.trincoll.edu/facProfiles/Default.aspx?fid=1335119">
Lin Cheng</a>,
<a href="http://turing.cs.trincoll.edu/~pyoon/">Peter Yoon</a> and
<a href="http://www.linkedin.com/pub/jiajia-zhao/34/a32/8ab">Jiajia Zhao</a>
</p>
<p>
Paper presented at
<a href="http://www.iasted.org/conferences/pastinfo-811.html">
IASTED PDCN</a> (2014)<br>
Poster presented at the <a href="http://www.gputechconf.com/page/home.html">
GPU Technology Conference</a> (2013)
</p>
<h2>Download</h2>
<ul>
<li>
Code:
<a href="https://github.com/hcho3/eigenmap_gpu">
https://github.com/hcho3/eigenmap_gpu
</a>
</li>
<li>
GTC poster: [<a href="posters/eigenmap_gpu_gtc.pdf">PDF</a>]
</li>
<li>
IASTED PDCN talk:
[<a href="talks/eigenmap_gpu_talk.pptx">PPTX</a>]
[<a href="talks/eigenmap_gpu_talk.pdf">PDF</a>]
</li>
<li>IASTED PDCN paper:
[<a href="http://www.actapress.com/PaperInfo.aspx?paperId=455890">Abstract</a>]
[<a href="preprints/eigenmap_gpu_iasted.pdf">Paper</a>]
</li>
</ul>
<h2>Synopsis</h2>
<p itemprop="description">
<strong>Laplacian eigenmap</strong> is an image segmentation algorithm
that began to gain traction in recent years. It involves a generalized
eigenvalue problem which extracts high-level features from local
neighborhood information. Unfortunately, it is computationally costly
to compute eigenvalues of a large linear systems. We make use of
general-purpose GPUs to accelerate the segmentation process.
</p>
<h2>Publication Details</h2>
<ul>
<li>
Conference Paper:<br>
Lin Cheng, Hyunsu Cho, and Peter Yoon. “GPU Accelerated
Vessel Segmentation Using Laplacian Eigenmaps,”
<em>Proceedings of the IASTED International Conference on Parallel
and Distributed Computing and Networks</em>, pp. 177-184,
Innsbruck, Austria, February 17, 2014.
</li>
<li>
Poster:<br>
Lin Cheng, Hyunsu Cho, Peter Yoon, and Jiajia Zhao. “GPU
Accelerated Vessel Segmentation Using Laplacian Eigenmaps,”
<em>The GPU Technology Conference 2013</em>, San Jose, CA,
March 18, 2013.
</li>
</ul>
<p>[<a href=".">← Go back to profile</a>]</p>
</div>
</body>
</html>