-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathctinfo.py
140 lines (113 loc) · 4.56 KB
/
ctinfo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
"""CTInfo
This module provides various methods to extract meta information
from DICOM files or series in directories and archives.
"""
import matplotlib
# Force matplotlib to not use any Xwindows backend.
matplotlib.use('Agg')
import shutil
import scipy.misc
import numpy as np
import pandas as pd
import multiprocessing
import dcmtools
from pathlib import Path
from multiprocessing import Pool
from functools import partial
from tqdm import tqdm
try:
# Python 2 compatibility
from StringIO import StringIO as IOBuffer
except ImportError:
from io import StringIO as IOBuffer
def process_archive(archive_filepath, prefix=".", img_format="jpg"):
logger = IOBuffer()
archive_path = str(archive_filepath)
case = dcmtools.decompress_case(archive_path)
studyInstanceUID, study = dcmtools.load_study(case)
if studyInstanceUID is None:
logger.write('No StudyInstanceUID found in filename {}'.format(archive_path))
return
folder = Path(prefix) / studyInstanceUID
folder.mkdir(exist_ok=True)
logger.write("Saving meta info: {}".format(folder))
studies_meta = []
for series in study:
img = series[0]
meta_info = {
'Filename': str(archive_path),
'StudyInstanceUID': str(img.StudyInstanceUID),
'SeriesInstanceUID': str(img.SeriesInstanceUID),
'PatientSex': str(img.PatientSex),
'AcquisitionDate': int(img.AcquisitionDate),
'SliceThicknessX': float(img.SliceThicknessX),
'SliceThicknessY': float(img.SliceThicknessY),
'SliceThicknessZ': float(img.SliceThicknessZ),
'PatientAge': int(img.PatientAge[:-1]),
'StudyDescription': str(img.StudyDescription),
'SeriesDescription': str(img.SeriesDescription)
}
studies_meta.append(meta_info)
logger.write(str(meta_info))
voxels, spacing = dcmtools.clip_voxel_values(series)
mid_slice_X = voxels[int(voxels.shape[0]//2), :, :]
mid_slice_Y = np.flipud(voxels[:, int(voxels.shape[1]//2), :])
mid_slice_Z = np.flipud(voxels[:, :, int(voxels.shape[2]//2)])
scipy.misc.imsave(
folder / "{}-{}.{}".format(img.SeriesInstanceUID, "X", img_format),
mid_slice_X)
scipy.misc.imsave(
folder / "{}-{}.{}".format(img.SeriesInstanceUID, "Y", img_format),
mid_slice_Y)
scipy.misc.imsave(
folder / "{}-{}.{}".format(img.SeriesInstanceUID, "Z", img_format),
mid_slice_Z)
df_meta_info = pd.DataFrame(studies_meta)
df_meta_info.to_csv(folder / "{}.{}".format(studyInstanceUID, "csv"))
# rewind the tape
logger.seek(0)
return logger
if __name__ == '__main__':
import os
import argparse
parser = argparse.ArgumentParser(
prog="CTInfo",
add_help="Extracts meta information from DICOM files or series in compressed archives.")
parser.add_argument("input", help="input file or directory")
parser.add_argument("--prefix", default=".", help="output prefix path")
args = parser.parse_args()
# whatever one provides as input
# in the end only one file is used to extract meta information
# declare some variables
archive_suffixes = ['gz', 'tgz', 'bz2', 'tbz']
path = Path(args.input)
# sanity check, raise error if input doesn't exist
if not path.exists():
raise ValueError("The input file does not exist.")
# a list of all files to be processed
archives_todo = []
# traverse directory and find archives
if path.is_dir():
# grab the first DICOM image in the directory
for (dirpath, dirnames, filenames) in os.walk(str(path)):
for fname in filenames:
fp = Path(dirpath) / fname
if fp.suffix[1:] in archive_suffixes:
archives_todo.append(fp)
elif path.is_file():
# only one file given as input
if path.suffix[1:] in archive_suffixes:
archives_todo.append(path)
logger = IOBuffer()
# start worker processes
with tqdm(desc="CTInfo", total=len(archives_todo), unit="file") as pbar:
with Pool(processes=multiprocessing.cpu_count()) as pool:
for log in tqdm(pool.imap_unordered(partial(process_archive, prefix=args.prefix), archives_todo)):
pbar.update(1)
logger.write(log.getvalue())
log_filep = Path(args.prefix) / "{}.log".format("MetaInfo")
with open(log_filep, "w") as fp:
# rewind the tape
logger.seek(0)
shutil.copyfileobj(logger, fp)