-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_cifar.py
355 lines (229 loc) · 11.4 KB
/
utils_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import numpy as np
import tensorflow as tf
import os
import scipy.io
import sys
from scipy.spatial.distance import cdist
try:
import cPickle
except:
import pickle as cPickle
def relu(x,name,alpha):
if alpha>0:
return tf.maxinum(alpha*x,x,name=name)
else:
return tf.nn.relu(x,name=name)
def get_variable(name,shape,dtype,initializer,regularizer=None,trainable = True):
with tf.device('/cpu:0'):
var = tf.get_variable(name,shape=shape,dtype=dtype,
initializer=initializer,regularizer=regularizer,trainable=trainable,
collections=[tf.GraphKeys.WEIGHTS,tf.GraphKeys.GLOBAL_VARIABLES])
return var
def conv(inp,name,size,out_channels,strides=[1,1,1,1],
dilation=None,padding='SAME',apply_relu=True,alpha=0.0,bias=True,
initializer=tf.contrib.layers.xavier_initializer_conv2d(),trainable =True):
batch_size = inp.get_shape().as_list()[0]#batch_size
res1 = inp.get_shape().as_list()[1]#width
res2 = inp.get_shape().as_list()[1]#height
in_channels = inp.get_shape().as_list()[3]#channel
with tf.variable_scope(name):
#size 是卷积核的大小
W = get_variable("W",shape=[size,size,in_channels,out_channels],dtype=tf.float32,
initializer=initializer,regularizer=tf.nn.l2_loss,trainable=trainable)
b = get_variable("b",shape=[1,1,1,out_channels],dtype=tf.float32,
initializer=tf.zeros_initializer(),trainable=bias)
if dilation:# 膨胀
assert(strides==[1,1,1,1])
out = tf.add(tf.nn.atrous_conv2d(inp,W,rate=dilation,padding=padding),b,name='convolution')
out.set_shape([batch_size,res1,res2,out_channels])
else:
out = tf.add(tf.nn.conv2d(inp,W,strides,padding=padding),b,name='convolution')
if apply_relu:
out = relu(out,'relu',alpha)
return out
def softmax(target,axis,name=None):
max_axis = tf.reduce_max(target,axis,keep_dims=True)#目标某个维度上的最大值
target_exp = tf.exp(target-max_axis)#减去最大值后的exp
normalize = tf.reduce_sum(target_exp,axis,keep_dims=True)
softmax = target_exp / normalize
return softmax
def batch_norm(inp,name,phase,decay=0.9,trainable =True):
channels = inp.get_shape().as_list()[3]
with tf.variable_scope(name):
moving_mean = get_variable("mean",shape=[channels],dtype=tf.float32,initializer=tf.constant_initializer(0.0),trainable=False)
moving_variance = get_variable("var",shape=[channels],dtype=tf.float32,initializer=tf.constant_initializer(1.0),trainable=False)
offset = get_variable("offset",shape=[channels],dtype=tf.float32,initializer=tf.constant_initializer(0.0),trainable=trainable)
scale = get_variable("scale",shape=[channels],dtype=tf.float32,initializer=tf.constant_initializer(1.0),regularizer=tf.nn.l2_loss,trainable=trainable)
mean,variance = tf.nn.moments(inp,axes=[0,1,2],shift=moving_mean)
mean_op=moving_mean.assign(decay*moving_mean+(1-decay)*mean)
var_op = moving_variance.assign(decay*moving_variance+(1-decay)*variance)
assert(phase in ['train','test'])
if phase == 'train':
with tf.control_dependencies([mean_op,var_op]):
return tf.nn.batch_normalization(inp,mean,variance,offset,scale,0.01,name='norm')
else:
return tf.nn.batch_normalization(inp,moving_mean,moving_variance,offset,scale,0.01,name='norm')
def pool(inp,name,kind,size,stride,padding='SAME'):
assert kind in ['max','avg']
strides=[1,stride,stride,1]
sizes = [1,size,size,1]
with tf.variable_scope(name):
if kind == 'max':
out = tf.nn.max_pool(inp,sizes,strides=strides,padding=padding,name=kind)
else:
out = tf.nn.avg_pool(inp,sizes,strides=strides,padding=padding,name=kind)
return out
def residual_block(inp,phase,alpha=0.0,nom='a',increase_dim=False,last=False,trainable = True):
input_num_filters = inp.get_shape().as_list()[3]
if increase_dim :
first_stride = [1,2,2,1]
out_num_filters = input_num_filters*2 #卷积核数量扩大一倍
else:
first_stride = [1,1,1,1]
out_num_filters = input_num_filters
layer = conv(inp,'resconv1'+nom,size=3,strides=first_stride,out_channels=out_num_filters,alpha=alpha,padding='SAME',trainable =trainable)
layer = batch_norm(layer,'batch_norm_resconv1'+nom,phase=phase,trainable=trainable)
layer = conv(layer,'resconv12'+nom,size=3,strides=[1,1,1,1],out_channels=out_num_filters,apply_relu=False,alpha=alpha,padding='SAME',trainable =trainable)
if increase_dim :
projection = conv(inp,'projconv'+nom,size=1,strides=[1,2,2,1],out_channels=out_num_filters,alpha=alpha,apply_relu=False,padding='SAME',bias=False,trainable =trainable)
projection = batch_norm(projection,'batch_norm_projconv'+nom,phase=phase,trainable=trainable)
if last :
block = layer +projection
else:
block = layer+ projection
block = tf.nn.relu(block,name='relu')
else:
if last:
block = layer +inp
else:
block = layer +inp
block = tf.nn.relu(block,name='relu')
return block
#multiple teacher and one student
#itera:第几次增量学习
#inp:输入模型
#固定旧block的参数。
#应该是加载旧模型,然后在就模型的基础上进行添加分支。
#先准备网络,将先前训练好的网络参数复制到新网络中。
#然后添加分支。固定分支网络不可训练。
#先准备一个共享网络块
#34层的残差网络15个BLOCK
#共享3个block
def ResNet31(inp, phase, num_outputs=100,itera=0,alpha=0.0,trainable=True):#phase test or train
# First conv
# first layer, output is 16 x 32 x 32
layer = conv(inp,"conv1",size=3,strides=[1, 1, 1, 1], out_channels=16, alpha=alpha, padding='SAME',trainable=trainable)
layer = batch_norm(layer, 'batch_norm_1', phase=phase,trainable=trainable)
#layer = pool(layer, 'pool1', 'max', size=3, stride=2)
# first stack of residual blocks, output is 32 x 32 x16
for letter in 'abcde':
layer = residual_block(layer, phase, alpha=0.0,nom=letter,trainable=trainable)
# second stack of residual blocks, output is 16 x 16 x32
layer = residual_block(layer, phase, alpha=0.0,nom='f',increase_dim=True,trainable=trainable)
for letter in 'ghij':
layer = residual_block(layer, phase, alpha=0.0,nom=letter,trainable=trainable)
# Third stack of residual blocks,output is 8 x 8 x 64
layer = residual_block(layer, phase, alpha=0.0,nom='k',increase_dim=True,trainable=trainable)
for letter in 'lmn':
layer = residual_block(layer, phase, alpha=0.0,nom=letter,trainable=trainable)
# forth stack of residual blocks,output is 4 x 4 x 128
layer = residual_block(layer, phase, alpha=0.0, nom='o', increase_dim=True,trainable=trainable)
return layer
def Add_ResNet(inp, phase, num_outputs=100,xu=0,alpha=0.0,trainable =True):
name = '_branch'+str(xu)
layer = residual_block(inp, phase, alpha=0.0, nom=name , last=True,trainable=trainable)
# 后面添加全连接层
name_pool = 'pool_last_'+str(xu)
layer = pool(layer, name_pool, 'avg', size=4, stride=1, padding='VALID')
name_fc = 'fc_'+str(xu)
layer = conv(layer, name=name_fc, size=1, out_channels=num_outputs, padding='VALID', apply_relu=False, alpha=alpha,trainable=trainable)[:, 0, 0,:]
return layer
def prepareNetwork(gpu,image_batch,itera):
scores = []
scores_stored = []
for i in range(itera+1):
scores.append([])
scores_stored.append([])
with tf.variable_scope('ResNet34'):
with tf.device('/gpu:' + gpu):
if itera ==0:
layer = ResNet31(image_batch, phase='train',trainable=True)
score = Add_ResNet(layer, phase='train',trainable=True)
scores.append(score)
elif itera >0:
layer = ResNet31(image_batch, phase='train', trainable=False)
for xu in range(itera+1):
if xu == itera:
score = Add_ResNet(layer, phase='train',trainable=True)
scores[xu].append(score)
else:
score = Add_ResNet(layer, phase='train',trainable=False)
scores[xu].append(score)
scope = tf.get_variable_scope()
scope.reuse_variables()
# First score and initialization
variables_graph = tf.get_collection(tf.GraphKeys.WEIGHTS, scope='ResNet34')
#scores_stored 比scores 少一个分支 对旧样本做出预测
with tf.variable_scope('store_ResNet34'):
with tf.device('/gpu:' + gpu):
if itera ==0:
layer = ResNet31(image_batch, phase='test',trainable=True)
score = Add_ResNet(layer, phase='test',trainable=True)
scores_stored.append(score)
elif itera >0:
layer = ResNet31(image_batch, phase='test', trainable=False)
for xu in range(itera):
score = Add_ResNet(layer, phase='test',trainable=False)
scores_stored[xu].append(score)
scope = tf.get_variable_scope()
scope.reuse_variables()
variables_graph2 = tf.get_collection(tf.GraphKeys.WEIGHTS, scope='store_ResNet34')
return variables_graph, variables_graph2, scores, scores_stored
def get_weight_initializer(params):
initializer = []
scope = tf.get_variable_scope()
scope.reuse_variables()
for layer, value in params.items():
op = tf.get_variable('%s' % layer).assign(value)
initializer.append(op)
return initializer
def save_model(name, scope, sess):
variables = tf.get_collection(tf.GraphKeys.WEIGHTS, scope=scope)
d = [(v.name.split(':')[0], sess.run(v)) for v in variables]
cPickle.dump(d, open(name, 'wb'))
# def accuracy_measure(X_valid, Y_valid, class_means, val_fn, top1_acc_list, iteration, iteration_total, type_data):
# stat_hb1 = []
# stat_icarl = []
# stat_ncm = []
#
# for batch in iterate_minibatches(X_valid, Y_valid, min(500, len(X_valid)), shuffle=False):
# inputs, targets_prep = batch
# targets = np.zeros((inputs.shape[0], 100), np.float32)
# targets[range(len(targets_prep)), targets_prep.astype('int32')] = 1.
# err, pred, pred_inter = val_fn(inputs, targets)
# pred_inter = (pred_inter.T / np.linalg.norm(pred_inter.T, axis=0)).T
#
# # Compute score for iCaRL
# sqd = cdist(class_means[:, :, 0].T, pred_inter, 'sqeuclidean')
# score_icarl = (-sqd).T
# # Compute score for NCM
# sqd = cdist(class_means[:, :, 1].T, pred_inter, 'sqeuclidean')
# score_ncm = (-sqd).T
#
# # Compute the accuracy over the batch
# stat_hb1 += ([ll in best for ll, best in zip(targets_prep.astype('int32'), np.argsort(pred, axis=1)[:, -1:])])
# stat_icarl += (
# [ll in best for ll, best in zip(targets_prep.astype('int32'), np.argsort(score_icarl, axis=1)[:, -1:])])
# stat_ncm += (
# [ll in best for ll, best in zip(targets_prep.astype('int32'), np.argsort(score_ncm, axis=1)[:, -1:])])
#
# print("Final results on " + type_data + " classes:")
# print(" top 1 accuracy iCaRL :\t\t{:.2f} %".format(np.average(stat_icarl) * 100))
# print(" top 1 accuracy Hybrid 1 :\t\t{:.2f} %".format(np.average(stat_hb1) * 100))
# print(" top 1 accuracy NCM :\t\t{:.2f} %".format(np.average(stat_ncm) * 100))
#
# top1_acc_list[iteration, 0, iteration_total] = np.average(stat_icarl) * 100
# top1_acc_list[iteration, 1, iteration_total] = np.average(stat_hb1) * 100
# top1_acc_list[iteration, 2, iteration_total] = np.average(stat_ncm) * 100
#
# return top1_acc_list