Dataloader
- use opencv (
cv2
) to read and process images.
-
Training: Download DIV2K dataset from DIV2K offical page, or from Baidu Drive.
-
Testing: Download LIVE1 dataset and CBSD68 dataset from Google Drive.
-
We use DIV2K dataset for training.
- since DIV2K images are large, we first crop them to sub images using
codes/data_scripts/extract_subimages.py
. - generate LQ images using matlab with
codes/data_scripts/generate_2groups.m
andcodes/data_scripts/generate_3groups.m
for CResMD,codes/data_scripts/generate_deg.m
for base network. - modify configurations in
options/train/xxx.yml
when training, e.g.,dataroot_GT
,dataroot_LQ
.
- since DIV2K images are large, we first crop them to sub images using
-
For validation and test folder.
- Generate different combinations of degradations using matlab with
codes/data_scripts/generate_2D_val.m
,codes/data_scripts/generate_3D_val.m
. - modify configurations on test dataset in
options/train/xxx.yml
oroptions/test/xxx.yml
when training or testing, e.g.,dataroot_GT
,dataroot_LQ
.
- Generate different combinations of degradations using matlab with
We use random crop, random flip/rotation, (random scale) for data augmentation.