-
Notifications
You must be signed in to change notification settings - Fork 9
/
getData.py
204 lines (172 loc) · 7.61 KB
/
getData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import gzip
import os
from sklearn.utils import shuffle
from torchvision import datasets, transforms
import torch
class GetDataSet(object):
def __init__(self, dataSetName, isIID):
self.name = dataSetName
self.train_data = None
self.train_label = None
self.train_data_size = None
self.test_data = None
self.test_label = None
self.test_data_size = None
self._index_in_train_epoch = 0
if self.name == 'mnist':
self.mnistDataSetConstruct(isIID)
else:
self.cifarDataSetConstruct(isIID)
def mnistDataSetConstruct(self, isIID):
data_dir = r'./data/MNIST'
# 选定图片路径
train_images_path = os.path.join(data_dir, 'train-images-idx3-ubyte.gz')
train_labels_path = os.path.join(data_dir, 'train-labels-idx1-ubyte.gz')
test_images_path = os.path.join(data_dir, 't10k-images-idx3-ubyte.gz')
test_labels_path = os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz')
# 从.gz中提取图片
train_images = extract_images(train_images_path)
train_labels = extract_labels(train_labels_path)
test_images = extract_images(test_images_path)
test_labels = extract_labels(test_labels_path)
assert train_images.shape[0] == train_labels.shape[0]
assert test_images.shape[0] == test_labels.shape[0]
self.train_data_size = train_images.shape[0]
self.test_data_size = test_images.shape[0]
# mnist黑白图片通道为1
assert train_images.shape[3] == 1
assert test_images.shape[3] == 1
# 图片展平
train_images = train_images.reshape(train_images.shape[0], train_images.shape[1] * train_images.shape[2])
test_images = test_images.reshape(test_images.shape[0], test_images.shape[1] * test_images.shape[2])
# 标准化处理
train_images = train_images.astype(np.float32)
train_images = np.multiply(train_images, 1.0 / 255.0)
test_images = test_images.astype(np.float32)
test_images = np.multiply(test_images, 1.0 / 255.0)
# 是否独立同分布
if isIID:
# 打乱顺序
order = np.arange(self.train_data_size)
np.random.shuffle(order)
self.train_data = train_images[order]
self.train_label = train_labels[order]
else:
# 按照0——9顺序排列
labels = np.argmax(train_labels, axis=1)
order = np.argsort(labels)
self.train_data = train_images[order]
self.train_label = train_labels[order]
self.test_data = test_images
self.test_label = test_labels
def cifarDataSetConstruct(self, isIID):
data_dir = r'./data/'
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_dataset = datasets.CIFAR10(data_dir, train=True, download=True,
transform=transform_train)
eval_dataset = datasets.CIFAR10(data_dir, train=False, transform=transform_test)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=50000, shuffle=False)
eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size=10000, shuffle=False)
train_images, train_labels = next(iter(train_loader))
test_images, test_labels = next(iter(eval_loader))
# 数据转换为numpy格式
train_images = train_images.numpy()
train_labels = dense_to_one_hot(train_labels.numpy())
test_images = test_images.numpy()
test_labels = dense_to_one_hot(test_labels.numpy())
# 验证数据导入无误
assert train_images.shape[0] == train_labels.shape[0]
assert test_images.shape[0] == test_labels.shape[0]
self.train_data_size = train_images.shape[0]
self.test_data_size = test_images.shape[0]
# cifar彩色图片通道为3
assert train_images.shape[1] == 3
assert test_images.shape[1] == 3
# 图片展平
train_images = train_images.reshape(train_images.shape[0], 3 * train_images.shape[2] * train_images.shape[3])
test_images = test_images.reshape(test_images.shape[0], 3 * test_images.shape[2] * test_images.shape[3])
# 是否独立同分布
if isIID:
# 打乱顺序
order = np.arange(self.train_data_size)
np.random.shuffle(order)
self.train_data = train_images[order]
self.train_label = train_labels[order]
else:
# 按照0——9顺序排列
labels = np.argmax(train_labels, axis=1)
order = np.argsort(labels)
self.train_data = train_images[order]
self.train_label = train_labels[order]
self.test_data = test_images
self.test_label = test_labels
# 比特流读取
def _read32(bytestream):
dt = np.dtype(np.uint32).newbyteorder('>')
return np.frombuffer(bytestream.read(4), dtype=dt)[0]
# 提取图片
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
# 标签one-hot编码
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
# 提取标签
def extract_labels(filename):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = np.frombuffer(buf, dtype=np.uint8)
return dense_to_one_hot(labels)
'''
if __name__=="__main__":
'test data set'
mnistDataSet = GetDataSet('mnist', True) # test NON-IID
if type(mnistDataSet.train_data) is np.ndarray and type(mnistDataSet.test_data) is np.ndarray and \
type(mnistDataSet.train_label) is np.ndarray and type(mnistDataSet.test_label) is np.ndarray:
print('the type of data is numpy ndarray')
else:
print('the type of data is not numpy ndarray')
print('the shape of the train data set is {}'.format(mnistDataSet.train_data.shape))
print('the shape of the test data set is {}'.format(mnistDataSet.test_data.shape))
print(mnistDataSet.train_label[0:100], mnistDataSet.train_label[11000:11100])
'''
'''
if __name__=="__main__":
data = GetDataSet('cifar', 1)
'''