-
Notifications
You must be signed in to change notification settings - Fork 38
/
main.py
executable file
·120 lines (90 loc) · 4.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from utils.constants import UNIVARIATE_ARCHIVE_NAMES as ARCHIVE_NAMES
from utils.constants import CLASSIFIERS
from utils.constants import UNIVARIATE_DATASET_NAMES as DATASET_NAMES
from utils.constants import ITERATIONS
from utils.utils import read_all_datasets
from utils.utils import transform_labels
from utils.utils import create_directory
import numpy as np
import sklearn
def prepare_data():
x_train = datasets_dict[dataset_name][0]
y_train = datasets_dict[dataset_name][1]
x_test = datasets_dict[dataset_name][2]
y_test = datasets_dict[dataset_name][3]
nb_classes = len(np.unique(np.concatenate((y_train, y_test), axis=0)))
# make the min to zero of labels
y_train, y_test = transform_labels(y_train, y_test)
# save orignal y because later we will use binary
y_true = y_test.astype(np.int64)
y_true_train = y_train.astype(np.int64)
# transform the labels from integers to one hot vectors
enc = sklearn.preprocessing.OneHotEncoder()
enc.fit(np.concatenate((y_train, y_test), axis=0).reshape(-1, 1))
y_train = enc.transform(y_train.reshape(-1, 1)).toarray()
y_test = enc.transform(y_test.reshape(-1, 1)).toarray()
if len(x_train.shape) == 2: # if univariate
# add a dimension to make it multivariate with one dimension
x_train = x_train.reshape((x_train.shape[0], x_train.shape[1], 1))
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1], 1))
return x_train, y_train, x_test, y_test,y_true, nb_classes,y_true_train, enc
def fit_classifier(load_weights=False):
input_shape = x_train.shape[1:]
classifier = create_classifier(classifier_name,input_shape, nb_classes, output_directory
,load_weights=load_weights)
classifier.fit(x_train,y_train,x_test,y_test, y_true)
def create_classifier(classifier_name, input_shape, nb_classes, output_directory, verbose = False,
build=True,load_weights=False):
if classifier_name=='fcn':
from classifiers import fcn
return fcn.Classifier_FCN(output_directory,input_shape, nb_classes, verbose,build=build)
if classifier_name=='mlp':
from classifiers import mlp
return mlp.Classifier_MLP(output_directory,input_shape, nb_classes, verbose,build=build)
if classifier_name=='resnet':
from classifiers import resnet
return resnet.Classifier_RESNET(output_directory,input_shape, nb_classes, verbose,
build=build,load_weights=load_weights)
if classifier_name=='encoder':
from classifiers import encoder
return encoder.Classifier_ENCODER(output_directory,input_shape, nb_classes, verbose,build=build)
if classifier_name=='mcdcnn':
from classifiers import mcdcnn
return mcdcnn.Classifier_MCDCNN(output_directory,input_shape, nb_classes, verbose,build=build)
if classifier_name=='cnn':
from classifiers import cnn
return cnn.Classifier_CNN(output_directory,input_shape, nb_classes, verbose,build=build)
if classifier_name=='ensembletransfer':
from classifiers import ensembletransfer
return ensembletransfer.Classifier_ENSEMBLETRANSFER(output_directory,input_shape,
nb_classes, verbose)
if classifier_name=='nne':
from classifiers import nne
return nne.Classifier_NNE(output_directory,input_shape,
nb_classes, verbose)
root_dir = '/b/home/uha/hfawaz-datas/dl-tsc/'
for classifier_name in CLASSIFIERS:
print('classifier_name',classifier_name)
for archive_name in ARCHIVE_NAMES:
print('\tarchive_name',archive_name)
datasets_dict = read_all_datasets(root_dir, archive_name)
for iter in range(ITERATIONS):
print('\t\titer',iter)
trr = ''
if iter!=0:
trr = '_itr_'+str(iter)
tmp_output_directory = root_dir+'/results/'+classifier_name+'/'+archive_name+trr+'/'
for dataset_name in DATASET_NAMES:
print('\t\t\tdataset_name: ', dataset_name)
x_train, y_train, x_test, y_test, y_true, nb_classes,y_true_train,enc = prepare_data()
output_directory = tmp_output_directory+dataset_name+'/'
if classifier_name!='nne' and classifier_name!='ensembletransfer':
temp_output_directory = create_directory(output_directory)
if temp_output_directory is None:
print('Already_done',tmp_output_directory,dataset_name)
continue
fit_classifier()
print('\t\t\t\tDONE')
if classifier_name!='nne' and classifier_name!='ensembletransfer':
# the creation of this directory means
create_directory(output_directory + '/DONE')