-
Notifications
You must be signed in to change notification settings - Fork 0
/
delContactMulti.m
227 lines (177 loc) · 7.75 KB
/
delContactMulti.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
function contacts=delContact(toDel)
%% Trial Primary Contact Type Determination
%
% Estimates contact times of the whisker into the pole. Good results
% requires a very accurate .bar file and accurate touch thresholds. Four
% touch thresholds are used, for go (protraction, retraction), no-go
% (protraction,retraction). These should be determined by visual
% inspection of the distanceToPoleCenter plots in several example trials,
% in concert with the video of the trial. Use Parameter Estimation cell to
% help.
%
% In general, k represents a trial number, i represents some event number
% in the trial (contact, spike).
%
% First use some generous limits for the touchThresh values. Then, use the
% plot output of the Contact Segmenter cell to refine the touchThresh
% values and rerun the Trial Primary Contact Type Determination
%
% Use Parameter Estimation cell to check how well the contacts are being
% scored (currently broken?)
%
%
% Currently designed to work only with 1 whisker, but could be modified to
% analyze a specific tid.
%
% Designed to be used with the Whisker.WhiskerTrialLiteI subclass, which
% has two additional fields, M0I: Holds the acceleration calculated moment
% contactInds: Index of contact times
%
% Pulls data from array.trials{k}.whiskerTrial.M0I
% Stores data to a subclassed field : array.trials{k}.whiskerTrial.contactInds
% Also writes a contacts{k} structure to the workspace that contains all
% the analysis output.
%
% Version 0.1.0 SAH 06/07/10
%
%
%
%% Contact Segmenter
%
% Segmentation of contacts into an ordered list. Each trial gets its own
% cell within the contacts structure. Analysis of each contact resides in
% within fields of contacts{k}, where k is the trial index.
% (k ~= overall trial number)
%
% This cell also plots the distance to pole of the first trial of each
% class (go pro/ret, nogo pro/ret)
h_app = getappdata(0);
h_pBG = h_app.hParamBrowserGui;
pBG_data = getappdata(h_pBG);
array = pBG_data.array;
params = pBG_data.params;
contacts = pBG_data.contacts;
whiskerTIN = params.sweepNum;
tidx = params.tid;
framePeriodInSec = 1000;
if isfield('shanksTrial',array.trials{1})
sampleRate = array.trials{1}.shanksTrial.sampleRate;
elseif isfield('spikesTrial',array.trials{1})
sampleRate = array.trials{1}.spikesTrial.sampleRate;
end
if ~isfield(contacts{whiskerTIN},'manualDel')
contacts{whiskerTIN}.manualDel{tidx} = [];
end
if ~isfield(contacts{whiskerTIN},'manualAdd')
contacts{whiskerTIN}.manualAdd{tidx} = [];
end
contacts{whiskerTIN}.manualDel{tidx} = unique(cat(2,toDel,contacts{whiskerTIN}.manualDel{tidx}));
contacts{whiskerTIN}.contactInds{tidx} = setdiff(contacts{whiskerTIN}.contactInds{tidx},contacts{whiskerTIN}.manualDel{tidx});
contacts{whiskerTIN}.manualAdd{tidx} = setdiff(contacts{whiskerTIN}.manualAdd{tidx},contacts{whiskerTIN}.manualDel{tidx});
M0(whiskerTIN) = cellfun(@(x)x.whiskerTrial.M0{tidx}, array.trials(whiskerTIN),'UniformOutput',0);
time(whiskerTIN) = cellfun(@(x)x.whiskerTrial.time{tidx}, array.trials(whiskerTIN),'UniformOutput',0);
for k=whiskerTIN;
if isempty(contacts{k}.contactInds{tidx})==0;
contacts{k}.segmentInds{tidx}=[];
contacts{k}.segmentInds{tidx}(:,1)=contacts{k}.contactInds{tidx}([1 find(diff(contacts{k}.contactInds{tidx})>4)+1]); % don't switch back to intertial if the tracking disappears for 1-3 frames
contacts{k}.segmentInds{tidx}(:,2)=contacts{k}.contactInds{tidx}([find(diff(contacts{k}.contactInds{tidx})>4) end]);
ind=[];
for i=1:length(contacts{k}.segmentInds{tidx}(:,1))
ind=cat(2,ind,contacts{k}.segmentInds{tidx}(i,1):contacts{k}.segmentInds{tidx}(i,2));
end
contacts{k}.inferredInds{tidx} = setdiff(ind,contacts{k}.contactInds{tidx});
contacts{k}.contactInds{tidx} = ind;
else
contacts{k}.segmentInds={[]};
trialContactType(k)=0;
end
end
%% Contact Characterizer
% Find mean M0 for each contact
disp('Finding mean M0 for each contact')
for k = whiskerTIN
if isempty(contacts{k}.segmentInds{tidx})==0
for i=1:length(contacts{k}.segmentInds{tidx}(:,1));
contacts{k}.meanM0{tidx}(i)=nanmean(M0{k}(contacts{k}.segmentInds{tidx}(i,1):contacts{k}.segmentInds{tidx}(i,2)));
end
else
contacts{k}.meanM0={[]};
end
end
% Find peak M0 for each contact
disp('Find peak M0 for each contact')
for k = whiskerTIN
if isempty(contacts{k}.segmentInds{tidx})==0
for i=1:length(contacts{k}.segmentInds{tidx}(:,1));
contacts{k}.peakM0{tidx}(i)=max(abs(M0{k}(contacts{k}.segmentInds{tidx}(i,1):contacts{k}.segmentInds{tidx}(i,2))))*...
sign(contacts{k}.meanM0{tidx}(i));
end
else
contacts{k}.peakM0={[]};
end
end
% Find spikes associated with each contact
disp('Finding spikes associated with each contact')
if isfield('shanksTrial',array.trials{tidx})
for k = whiskerTIN
if isempty(contacts{k}.segmentInds{tidx}) == 0
for i=1:length(contacts{k}.segmentInds{tidx}(:,1));
lim = time{k}(contacts{k}.segmentInds{tidx}(i,:)) + params.spikeSynapticOffset;
contacts{k}.spikeCount{tidx}(i,:) = cellfun(@(x)...
sum(double(x.spikeTimes) / sampleRate - array.whiskerTrialTimeOffset > lim(1)...
& double(x.spikeTimes) / sampleRate - array.whiskerTrialTimeOffset < lim(2)),...
array.trials{k}.shanksTrial.clustData);
end
else
contacts{k}.spikeCount={[]};
end
end
elseif isfield('spikesTrial',array.trials{tidx})
for k = whiskerTIN
if isempty(contacts{k}.segmentInds{tidx}) == 0
for i=1:length(contacts{k}.segmentInds{tidx}(:,1));
lim = time{k}(contacts{k}.segmentInds{tidx}(i,:)) + params.spikeSynapticOffset;
contacts{k}.spikeCount{tidx}(i,:) = sum(double(array.trials{k}.spikesTrial.spikeTimes) / sampleRate - array.whiskerTrialTimeOffset > lim(1)...
& double(array.trials{k}.spikesTrial.spikeTimes) / sampleRate - array.whiskerTrialTimeOffset < lim(2));
end
else
contacts{k}.spikeCount={[]};
end
end
else
end
% Find timelength for each contact
disp('Finding timelength for each contact')
for k = whiskerTIN
if isempty(contacts{k}.segmentInds{tidx})==0
contacts{k}.contactLength{tidx}=time{k}(contacts{k}.segmentInds{tidx}(:,2))-time{k}(contacts{k}.segmentInds{tidx}(:,1));
else
contacts{k}.contactLength={[]};
end
end
disp('Merging contact/curvature-derived moment (M0) and axial force (FaxialAdj) with acceleration based moment (M0I)')
% Find mean M0 for each contact
disp('Finding mean Faxial for each contact')
for k = whiskerTIN
if isempty(contacts{k}.segmentInds{tidx})==0
for i=1:length(contacts{k}.segmentInds{tidx}(:,1));
contacts{k}.meanFaxial{tidx}(i)=nanmean(contacts{k}.FaxialAdj{tidx}(contacts{k}.segmentInds{tidx}(i,1):contacts{k}.segmentInds{tidx}(i,2)));
end
else
contacts{k}.meanFaxial={[]};
end
end
% Find peak M0 for each contact
disp('Find peak Faxial for each contact')
for k = whiskerTIN
if isempty(contacts{k}.segmentInds{tidx})==0
for i=1:length(contacts{k}.segmentInds{tidx}(:,1));
contacts{k}.peakFaxial{tidx}(i)=min(contacts{k}.FaxialAdj{tidx}(contacts{k}.segmentInds{tidx}(i,1):contacts{k}.segmentInds{tidx}(i,2)));
end
else
contacts{k}.peakFaxial={[]};
end
end
setappdata(h_pBG,'contacts',contacts);
assignin('base','contacts',contacts);
display('Contact Deleted')