Skip to content

Latest commit

 

History

History
507 lines (414 loc) · 13.9 KB

0513.找树左下角的值.md

File metadata and controls

507 lines (414 loc) · 13.9 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

513.找树左下角的值

力扣题目链接

给定一个二叉树,在树的最后一行找到最左边的值。

示例 1:

513.找树左下角的值

示例 2:

513.找树左下角的值1

思路

本地要找出树的最后一行找到最左边的值。此时大家应该想起用层序遍历是非常简单的了,反而用递归的话会比较难一点。

我们依然还是先介绍递归法。

递归

咋眼一看,这道题目用递归的话就就一直向左遍历,最后一个就是答案呗?

没有这么简单,一直向左遍历到最后一个,它未必是最后一行啊。

我们来分析一下题目:在树的最后一行找到最左边的值

首先要是最后一行,然后是最左边的值。

如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

如果对二叉树深度和高度还有点疑惑的话,请看:110.平衡二叉树

所以要找深度最大的叶子节点。

那么如果找最左边的呢?可以使用前序遍历,这样才先优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归三部曲:

  1. 确定递归函数的参数和返回值

参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,maxleftValue记录最大深度最左节点的数值。

代码如下:

int maxLen = INT_MIN;   // 全局变量 记录最大深度
int maxleftValue;       // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int leftLen)

有的同学可能疑惑,为啥不能递归函数的返回值返回最长深度呢?

其实很多同学都对递归函数什么时候要有返回值,什么时候不能有返回值很迷茫。

如果需要遍历整棵树,递归函数就不能有返回值。如果需要遍历某一条固定路线,递归函数就一定要有返回值!

初学者可能对这个结论不太理解,别急,后面我会安排一道题目专门讲递归函数的返回值问题。这里大家暂时先了解一下。

本题我们是要遍历整个树找到最深的叶子节点,需要遍历整棵树,所以递归函数没有返回值。

  1. 确定终止条件

当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

代码如下:

if (root->left == NULL && root->right == NULL) {
    if (leftLen > maxLen) {
        maxLen = leftLen;           // 更新最大深度
        maxleftValue = root->val;   // 最大深度最左面的数值
    }
    return;
}
  1. 确定单层递归的逻辑

在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

                    //
if (root->left) {   //
    leftLen++; // 深度加一
    traversal(root->left, leftLen);
    leftLen--; // 回溯,深度减一
}
if (root->right) { //
    leftLen++; // 深度加一
    traversal(root->right, leftLen);
    leftLen--; // 回溯,深度减一
}
return;

完整代码如下:

class Solution {
public:
    int maxLen = INT_MIN;
    int maxleftValue;
    void traversal(TreeNode* root, int leftLen) {
        if (root->left == NULL && root->right == NULL) {
            if (leftLen > maxLen) {
                maxLen = leftLen;
                maxleftValue = root->val;
            }
            return;
        }
        if (root->left) {
            leftLen++;
            traversal(root->left, leftLen);
            leftLen--; // 回溯
        }
        if (root->right) {
            leftLen++;
            traversal(root->right, leftLen);
            leftLen--; // 回溯
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return maxleftValue;
    }
};

当然回溯的地方可以精简,精简代码如下:

class Solution {
public:
    int maxLen = INT_MIN;
    int maxleftValue;
    void traversal(TreeNode* root, int leftLen) {
        if (root->left == NULL && root->right == NULL) {
            if (leftLen > maxLen) {
                maxLen = leftLen;
                maxleftValue = root->val;
            }
            return;
        }
        if (root->left) {
            traversal(root->left, leftLen + 1); // 隐藏着回溯
        }
        if (root->right) {
            traversal(root->right, leftLen + 1); // 隐藏着回溯
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return maxleftValue;
    }
};

如果对回溯部分精简的代码 不理解的话,可以看这篇257. 二叉树的所有路径

迭代法

本题使用层序遍历再合适不过了,比递归要好理解的多!

只需要记录最后一行第一个节点的数值就可以了。

如果对层序遍历不了解,看这篇二叉树:层序遍历登场!,这篇里也给出了层序遍历的模板,稍作修改就一过刷了这道题了。

代码如下:

class Solution {
public:
    int findBottomLeftValue(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (i == 0) result = node->val; // 记录最后一行第一个元素
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

总结

本题涉及如下几点:

  • 递归求深度的写法,我们在110.平衡二叉树中详细的分析了深度应该怎么求,高度应该怎么求。
  • 递归中其实隐藏了回溯,在257. 二叉树的所有路径中讲解了究竟哪里使用了回溯,哪里隐藏了回溯。
  • 层次遍历,在二叉树:层序遍历登场!深度讲解了二叉树层次遍历。 所以本题涉及到的点,我们之前都讲解过,这些知识点需要同学们灵活运用,这样就举一反三了。

其他语言版本

Java

// 递归法
class Solution {
    private int Deep = -1;
    private int value = 0;
    public int findBottomLeftValue(TreeNode root) {
        value = root.val;
        findLeftValue(root,0);
        return value;
    }

    private void findLeftValue (TreeNode root,int deep) {
        if (root == null) return;
        if (root.left == null && root.right == null) {
            if (deep > Deep) {
                value = root.val;
                Deep = deep;
            }
        }
        if (root.left != null) findLeftValue(root.left,deep + 1);
        if (root.right != null) findLeftValue(root.right,deep + 1);
    }
}
//迭代法
class Solution {

    public int findBottomLeftValue(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int res = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode poll = queue.poll();
                if (i == 0) {
                    res = poll.val;
                }
                if (poll.left != null) {
                    queue.offer(poll.left);
                }
                if (poll.right != null) {
                    queue.offer(poll.right);
                }
            }
        }
        return res;
    }
}

Python

递归:

class Solution:
    def findBottomLeftValue(self, root: TreeNode) -> int:
        max_depth = -float("INF")
        leftmost_val = 0

        def __traverse(root, cur_depth): 
            nonlocal max_depth, leftmost_val
            if not root.left and not root.right: 
                if cur_depth > max_depth: 
                    max_depth = cur_depth
                    leftmost_val = root.val  
            if root.left: 
                cur_depth += 1
                __traverse(root.left, cur_depth)
                cur_depth -= 1
            if root.right: 
                cur_depth += 1
                __traverse(root.right, cur_depth)
                cur_depth -= 1

        __traverse(root, 0)
        return leftmost_val

迭代 - 层序遍历:

class Solution:
    def findBottomLeftValue(self, root: TreeNode) -> int:
        queue = deque()
        if root: 
            queue.append(root)
        result = 0
        while queue: 
            q_len = len(queue)
            for i in range(q_len): 
                if i == 0: 
                    result = queue[i].val 
                cur = queue.popleft()
                if cur.left: 
                    queue.append(cur.left)
                if cur.right: 
                    queue.append(cur.right)
        return result

Go

递归法:

 var maxDeep int // 全局变量 深度
 var  value  int //全局变量 最终值
func findBottomLeftValue(root *TreeNode) int {
     if root.Left==nil&&root.Right==nil{//需要提前判断一下(不要这个if的话提交结果会出错,但执行代码不会。防止这种情况出现,故先判断是否只有一个节点)
         return root.Val
     }
    findLeftValue (root,maxDeep)
    return value
}
func findLeftValue (root *TreeNode,deep int){
     //最左边的值在左边
     if root.Left==nil&&root.Right==nil{
         if deep>maxDeep{
             value=root.Val
             maxDeep=deep
         }
     }
    //递归
    if root.Left!=nil{
        deep++
        findLeftValue(root.Left,deep)
        deep--//回溯
    }
    if root.Right!=nil{
        deep++
        findLeftValue(root.Right,deep)
        deep--//回溯
    }
}

迭代法:

func findBottomLeftValue(root *TreeNode) int {
    queue:=list.New()
    var gradation int
    queue.PushBack(root)
    for queue.Len()>0{
        length:=queue.Len()
        for i:=0;i<length;i++{
            node:=queue.Remove(queue.Front()).(*TreeNode)
            if i==0{gradation=node.Val}
            if node.Left!=nil{
                queue.PushBack(node.Left)
            }
            if node.Right!=nil{
                queue.PushBack(node.Right)
            }
        }
    }
    return gradation
}

JavaScript

递归版本:

var findBottomLeftValue = function(root) {
    //首先考虑递归遍历 前序遍历 找到最大深度的叶子节点即可
    let maxPath = 0,resNode = null;
    // 1. 确定递归函数的函数参数
    const dfsTree = function(node,curPath){
    // 2. 确定递归函数终止条件
        if(node.left===null&&node.right===null){
            if(curPath>maxPath){
            maxPath = curPath;
            resNode = node.val;
            }
            // return ;
        }
        node.left&&dfsTree(node.left,curPath+1);
        node.right&&dfsTree(node.right,curPath+1);
    }
    dfsTree(root,1);
    return resNode;
};

层序遍历:

var findBottomLeftValue = function(root) {
    //考虑层序遍历 记录最后一行的第一个节点
    let queue = [];
    if(root===null){
        return null;
    }
    queue.push(root);
    let resNode;
    while(queue.length){
        let length =  queue.length;
        for(let i=0; i<length; i++){
            let node = queue.shift();
            if(i===0){
                resNode = node.val;
            }
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
    }
    return resNode;
};

Swift

递归版本:

var maxLen = -1
var maxLeftValue = 0
func findBottomLeftValue_2(_ root: TreeNode?) -> Int {
    traversal(root, 0)
    return maxLeftValue
}

func traversal(_ root: TreeNode?, _ deep: Int) {
    guard let root = root else {
        return
    }

    if root.left == nil && root.right == nil {
        if deep > maxLen {
            maxLen = deep
            maxLeftValue = root.val
        }
        return
    }
    
    if root.left != nil {
        traversal(root.left, deep + 1)
    }
    
    if root.right != nil {
        traversal(root.right, deep + 1)
    }
    return
}

层序遍历:

func findBottomLeftValue(_ root: TreeNode?) -> Int {
    guard let root = root else {
        return 0
    }
    
    var queue = [root]
    var result = 0
    
    while !queue.isEmpty {
        let size = queue.count
        for i in 0..<size {
            let firstNode = queue.removeFirst()
          
            if i == 0 {
                result = firstNode.val
            }
            
            if let leftNode = firstNode.left {
                queue.append(leftNode)
            }
            
            if let rightNode = firstNode.right {
                queue.append(rightNode)
            }
        }
    }
    return result
}