-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
148 lines (126 loc) · 4.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
from data import DiffSet
import pytorch_lightning as pl
from model import DiffusionModel
from torch.utils.data import DataLoader
import imageio
import glob
from tqdm import tqdm
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import os
def sample_gif(model, train_dataset, output_dir) -> None:
gif_shape = [3, 3] # The gif will be a grid of images of this shape
sample_batch_size = gif_shape[0] * gif_shape[1]
n_hold_final = 100 # How many samples to append to the end of the GIF to hold the final image fixed
# Generate samples from denoising process
gen_samples = []
sampled_steps = []
# Generate random noise
x = torch.randn(
(sample_batch_size, train_dataset.depth, train_dataset.size, train_dataset.size)
)
sample_steps = torch.arange(model.t_range - 1, 0, -1)
sampled_t = 0
# Denoise the initial noise for T steps
for t in tqdm(sample_steps, desc="Sampling"):
x = model.denoise_sample(x, t)
sampled_t = t
gen_samples.append(x)
sampled_steps.append(sampled_t)
# Add the final image to the end of the GIF many times to hold it fixed
for _ in range(n_hold_final):
gen_samples.append(x)
sampled_steps.append(sampled_t)
gen_samples = torch.stack(gen_samples, dim=0).moveaxis(2, 4).squeeze(-1)
gen_samples = (gen_samples.clamp(-1, 1) + 1) / 2
assert gen_samples.shape[0] == len(sampled_steps)
gen_samples = (gen_samples * 255).type(torch.uint8)
gen_samples = gen_samples.reshape(
-1,
gif_shape[0],
gif_shape[1],
train_dataset.size,
train_dataset.size,
train_dataset.depth,
)
# Add a text to the first image in each grid to indicate the step shown
def add_text_to_image(image, text):
black_image = np.zeros_like(image.numpy())
black_image = Image.fromarray(black_image, "RGB")
draw = ImageDraw.Draw(black_image)
font = ImageFont.load_default()
draw.text((0, 0), text, (255, 255, 255), font=font)
black_image = torch.tensor(np.array(black_image))
return black_image
for i in range(gen_samples.shape[0]):
gen_samples[i, 0, 0] = add_text_to_image(
gen_samples[i, 0, 0], f"{sampled_steps[i]}"
)
def stack_samples(gen_samples, stack_dim):
gen_samples = list(torch.split(gen_samples, 1, dim=1))
for i in range(len(gen_samples)):
gen_samples[i] = gen_samples[i].squeeze(1)
return torch.cat(gen_samples, dim=stack_dim)
gen_samples = stack_samples(gen_samples, 2)
gen_samples = stack_samples(gen_samples, 2)
output_file = f"{output_dir}/pred.gif"
os.makedirs(os.path.dirname(output_file), exist_ok=True)
imageio.mimsave(
output_file, list(gen_samples.squeeze(-1)), format="GIF", duration=20
)
def train_model(config: dict) -> None:
# Code for optionally loading model
pass_version = None
last_checkpoint = None
if config['load_model']:
pass_version = config["load_version_num"]
last_checkpoint = glob.glob(
f"./lightning_logs/{config['dataset']}/version_{config['load_version_num']}/checkpoints/*.ckpt"
)[-1]
# Create datasets and data loaders
train_dataset = DiffSet(True, config["dataset"])
val_dataset = DiffSet(False, config["dataset"])
train_loader = DataLoader(
train_dataset, batch_size=config["batch_size"], num_workers=4, shuffle=True
)
val_loader = DataLoader(
val_dataset, batch_size=config["batch_size"], num_workers=4, shuffle=True
)
# Create model and trainer
if config['load_model']:
model = DiffusionModel.load_from_checkpoint(
last_checkpoint,
in_size=train_dataset.size * train_dataset.size,
t_range=config["diffusion_steps"],
img_depth=train_dataset.depth,
)
else:
model = DiffusionModel(
train_dataset.size * train_dataset.size,
config["diffusion_steps"],
train_dataset.depth,
)
# Load Trainer model
tb_logger = pl.loggers.TensorBoardLogger(
"lightning_logs/",
name=config["dataset"],
version=pass_version,
)
trainer = pl.Trainer(max_epochs=config["max_epoch"], log_every_n_steps=10, logger=tb_logger)
# Train model
trainer.fit(model, train_loader, val_loader)
return model, train_dataset, trainer.logger.log_dir
def get_config() -> dict:
return {
"diffusion_steps": 1000,
"dataset": "CIFAR10",
"max_epoch": 10,
"batch_size": 32,
"load_model": False,
"load_version_num": 1,
}
if __name__ == "__main__":
config = get_config()
model, train_ds, output_dir = train_model(config)
sample_gif(model, train_ds, output_dir)