This directory contains the code for the paper Monotonic Multihead Attention
Please follow the instructions to download and preprocess the WMT'15 En-De dataset.
- MMA-IL
fairseq-train \
data-bin/wmt15_en_de_32k \
--simul-type infinite_lookback \
--user-dir $FAIRSEQ/example/simultaneous_translation \
--mass-preservation \
--criterion latency_augmented_label_smoothed_cross_entropy \
--latency-weight-avg 0.1 \
--max-update 50000 \
--arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
--optimizer adam --adam-betas '(0.9, 0.98)' \
--lr-scheduler 'inverse_sqrt' \
--warmup-init-lr 1e-7 --warmup-updates 4000 \
--lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
--dropout 0.3 \
--label-smoothing 0.1\
--max-tokens 3584
- MMA-H
fairseq-train \
data-bin/wmt15_en_de_32k \
--simul-type hard_aligned \
--user-dir $FAIRSEQ/example/simultaneous_translation \
--mass-preservation \
--criterion latency_augmented_label_smoothed_cross_entropy \
--latency-weight-var 0.1 \
--max-update 50000 \
--arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
--optimizer adam --adam-betas '(0.9, 0.98)' \
--lr-scheduler 'inverse_sqrt' \
--warmup-init-lr 1e-7 --warmup-updates 4000 \
--lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
--dropout 0.3 \
--label-smoothing 0.1\
--max-tokens 3584
- wait-k
fairseq-train \
data-bin/wmt15_en_de_32k \
--simul-type wait-k \
--waitk-lagging 3 \
--user-dir $FAIRSEQ/example/simultaneous_translation \
--mass-preservation \
--criterion latency_augmented_label_smoothed_cross_entropy \
--max-update 50000 \
--arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
--optimizer adam --adam-betas '(0.9, 0.98)' \
--lr-scheduler 'inverse_sqrt' \
--warmup-init-lr 1e-7 --warmup-updates 4000 \
--lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
--dropout 0.3 \
--label-smoothing 0.1\
--max-tokens 3584
More details on evaluation can be found here
python ./eval/server.py \
--src-file $SRC_FILE \
--ref-file $TGT_FILE
python ./evaluate.py \
--data-bin data-bin/wmt15_en_de_32k \
--model-path ./checkpoints/checkpoint_best.pt
--scores --output $RESULT_DIR
python ./eval/evaluate.py
--local \
--src-file $SRC_FILE \
--tgt-file $TGT_FILE \
--data-bin data-bin/wmt15_en_de_32k \
--model-path ./checkpoints/checkpoint_best.pt \
--scores --output $RESULT_DIR