Skip to content

Commit

Permalink
docker : add server-first container images (ggerganov#5157)
Browse files Browse the repository at this point in the history
* feat: add Dockerfiles for each platform that user ./server instead of ./main

* feat: update .github/workflows/docker.yml to build server-first docker containers

* doc: add information about running the server with Docker to README.md

* doc: add information about running with docker to the server README

* doc: update n-gpu-layers to show correct GPU usage

* fix(doc): update container tag from `server` to `server-cuda` for README example on running server container with CUDA
  • Loading branch information
K-Mistele authored and hodlen committed Apr 1, 2024
1 parent 0cbcb60 commit c69e972
Show file tree
Hide file tree
Showing 7 changed files with 147 additions and 1 deletion.
32 changes: 32 additions & 0 deletions .devops/server-cuda.Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}

FROM ${BASE_CUDA_DEV_CONTAINER} as build

# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all

RUN apt-get update && \
apt-get install -y build-essential git

WORKDIR /app

COPY . .

# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV LLAMA_CUBLAS=1

RUN make

FROM ${BASE_CUDA_RUN_CONTAINER} as runtime

COPY --from=build /app/server /server

ENTRYPOINT [ "/server" ]
25 changes: 25 additions & 0 deletions .devops/server-intel.Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
ARG UBUNTU_VERSION=22.04

FROM intel/hpckit:$ONEAPI_VERSION as build

RUN apt-get update && \
apt-get install -y git

WORKDIR /app

COPY . .

# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
RUN mkdir build && \
cd build && \
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
cmake --build . --config Release --target main server

FROM ubuntu:$UBUNTU_VERSION as runtime

COPY --from=build /app/build/bin/server /server

ENV LC_ALL=C.utf8

ENTRYPOINT [ "/server" ]
45 changes: 45 additions & 0 deletions .devops/server-rocm.Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
ARG UBUNTU_VERSION=22.04

# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6

# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete

FROM ${BASE_ROCM_DEV_CONTAINER} as build

# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH=\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102

COPY requirements.txt requirements.txt
COPY requirements requirements

RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

WORKDIR /app

COPY . .

# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++

RUN make

ENTRYPOINT [ "/app/server" ]
20 changes: 20 additions & 0 deletions .devops/server.Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
ARG UBUNTU_VERSION=22.04

FROM ubuntu:$UBUNTU_VERSION as build

RUN apt-get update && \
apt-get install -y build-essential git

WORKDIR /app

COPY . .

RUN make

FROM ubuntu:$UBUNTU_VERSION as runtime

COPY --from=build /app/server /server

ENV LC_ALL=C.utf8

ENTRYPOINT [ "/server" ]
4 changes: 4 additions & 0 deletions .github/workflows/docker.yml
Original file line number Diff line number Diff line change
Expand Up @@ -28,14 +28,18 @@ jobs:
config:
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server", dockerfile: ".devops/server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
# have disabled them for now until the reason why
# is understood.
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v3
Expand Down
14 changes: 13 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -931,17 +931,20 @@ Place your desired model into the `~/llama.cpp/models/` directory and execute th
* Create a folder to store big models & intermediate files (ex. /llama/models)

#### Images
We have two Docker images available for this project:
We have three Docker images available for this project:

1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executabhle file. (platforms: `linux/amd64`, `linux/arm64`)

Additionally, there the following images, similar to the above:

- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)

The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
Expand All @@ -967,6 +970,12 @@ or with a light image:
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
or with a server image:
```bash
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
```
### Docker With CUDA
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
Expand All @@ -976,6 +985,7 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
Expand All @@ -989,6 +999,7 @@ The resulting images, are essentially the same as the non-CUDA images:
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
#### Usage
Expand All @@ -997,6 +1008,7 @@ After building locally, Usage is similar to the non-CUDA examples, but you'll ne
```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
```

### Contributing
Expand Down
8 changes: 8 additions & 0 deletions examples/server/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,14 @@ server.exe -m models\7B\ggml-model.gguf -c 2048
The above command will start a server that by default listens on `127.0.0.1:8080`.
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.

### Docker:
```bash
docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
# or, with CUDA:
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
```

## Testing with CURL

Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the base OS.
Expand Down

0 comments on commit c69e972

Please sign in to comment.