We have trained several models for the LaTeX part of the TableBank dataset using the Mask-RCNN, RetinaNet, SSD and YOLO algorithms using different deep learning libraries. To this aim, we have used several libraries:
- Keras library for Mask RCNN
- Keras library for RetinaNet
- Implementation of SSD in MXNet
- Implementation of YOLO in Darknet
To evaluate our models, we have employed the same metric used in the ICDAR 2019 Competition on Table Detection.
Model | P@0.6 | R@0.6 | F1@0.6 | P@0.7 | R@0.7 | F1@0.7 | P@0.8 | R@0.8 | F1@0.8 | P@0.9 | R@0.9 | F1@0.9 | WAvgF1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mask RCNN | 0,94 | 0,98 | 0,96 | 0,94 | 0,97 | 0,95 | 0,93 | 0,96 | 0,94 | 0,84 | 0,87 | 0,86 | 0,92 |
RetinaNet | 0,98 | 0,86 | 0,92 | 0,98 | 0,86 | 0,92 | 0,97 | 0,85 | 0,91 | 0,94 | 0,82 | 0,87 | 0,90 |
SSD | 0,96 | 0,97 | 0,96 | 0,94 | 0,95 | 0,95 | 0,92 | 0,92 | 0,92 | 0,82 | 0,82 | 0,82 | 0,90 |
YOLO | 0,98 | 0,99 | 0,98 | 0,98 | 0,99 | 0,98 | 0,96 | 0,97 | 0,96 | 0,74 | 0,75 | 0,75 | 0,90 |
The trained models are available in the format used by each framework, and distributed under the GNU General Public License v3.0
- Mask RCNN: weights.
- RetinaNet: weights, classes file.
- SSD: weights.
- YOLO: weights, config file, names file.
You can use the trained models with the following notebooks.