Skip to content

Latest commit

 

History

History
36 lines (26 loc) · 2.73 KB

TableBank.md

File metadata and controls

36 lines (26 loc) · 2.73 KB

TableBank

We have trained several models for the LaTeX part of the TableBank dataset using the Mask-RCNN, RetinaNet, SSD and YOLO algorithms using different deep learning libraries. To this aim, we have used several libraries:

Results

To evaluate our models, we have employed the same metric used in the ICDAR 2019 Competition on Table Detection.

Model P@0.6 R@0.6 F1@0.6 P@0.7 R@0.7 F1@0.7 P@0.8 R@0.8 F1@0.8 P@0.9 R@0.9 F1@0.9 WAvgF1
Mask RCNN 0,94 0,98 0,96 0,94 0,97 0,95 0,93 0,96 0,94 0,84 0,87 0,86 0,92
RetinaNet 0,98 0,86 0,92 0,98 0,86 0,92 0,97 0,85 0,91 0,94 0,82 0,87 0,90
SSD 0,96 0,97 0,96 0,94 0,95 0,95 0,92 0,92 0,92 0,82 0,82 0,82 0,90
YOLO 0,98 0,99 0,98 0,98 0,99 0,98 0,96 0,97 0,96 0,74 0,75 0,75 0,90

Model Zoo

The trained models are available in the format used by each framework, and distributed under the GNU General Public License v3.0

Colab Notebooks for prediction

You can use the trained models with the following notebooks.