-
Notifications
You must be signed in to change notification settings - Fork 4
/
sweet.py
137 lines (118 loc) · 5.41 KB
/
sweet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import annotations
from watermark import WatermarkDetector, WatermarkLogitsProcessor
from collections import defaultdict
import torch
import tqdm
import math
import pdb
class SweetLogitsProcessor(WatermarkLogitsProcessor):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if self.rng is None:
self.rng = torch.Generator()
batched_greenlist_ids = [None for _ in range(input_ids.shape[0])]
for b_idx in range(input_ids.shape[0]):
greenlist_ids = self._get_greenlist_ids(input_ids[b_idx])
batched_greenlist_ids[b_idx] = greenlist_ids
green_tokens_mask = self._calc_greenlist_mask(scores=scores, greenlist_token_ids=batched_greenlist_ids)
# get entropy
raw_probs = torch.softmax(scores, dim=-1) # batch_size, vocab_size
ent = -torch.where(raw_probs > 0, raw_probs * raw_probs.log(), raw_probs.new([0.0])).sum(dim=-1)
entropy_mask = (ent > self.entropy_threshold).view(-1, 1)
green_tokens_mask = green_tokens_mask * entropy_mask
scores = self._bias_greenlist_logits(
scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta
)
return scores
class SweetDetector(WatermarkDetector):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) # entropy threshold 포함됨
def _score_sequence(
self,
input_ids: torch.Tensor,
prefix_len: int,
entropy: list[float],
return_num_tokens_scored: bool = True,
return_num_green_tokens: bool = True,
return_watermarking_fraction: bool = True,
return_green_fraction: bool = True,
return_green_token_mask: bool = False,
return_z_score: bool = True,
return_p_value: bool = True,
):
score_dict = dict()
prefix_len = max(self.min_prefix_len, prefix_len)
if self.ignore_repeated_bigrams:
raise NotImplementedError("not implemented for entropy")
num_tokens_generated = len(input_ids) - prefix_len
if num_tokens_generated < 1:
print(f"only {num_tokens_generated} generated : cannot score.")
score_dict["invalid"] = True
return score_dict
try:
assert len(entropy) == len(input_ids) # eos id나 pad id 있으면 어쩌지?
except AssertionError:
print("len(entropy) != len(input_ids)")
pdb.set_trace()
num_tokens_scored = num_tokens_generated - len(
[e for e in entropy[prefix_len:] if e <= self.entropy_threshold]
) # entropy_threshold보다 작은 entropy를 가진 token은 score하지 않음.
if num_tokens_scored < 1:
assert num_tokens_scored == 0
# regarding as human generated
return {
"num_tokens_generated": num_tokens_generated,
"num_tokens_scored": 0,
"num_green_tokens": 0,
"watermarking_fraction": 0,
"green_fraction": 0,
"z_score": -100.0,
"p_value": 1,
}
# Standard method.
# Since we generally need at least 1 token (for the simplest scheme)
# we start the iteration over the token sequence with a minimum
# num tokens as the first prefix for the seeding scheme,
# and at each step, compute the greenlist induced by the
# current prefix and check if the current token falls in the greenlist.
green_token_count, green_token_mask = 0, []
for idx in range(prefix_len, len(input_ids)):
curr_token = input_ids[idx]
greenlist_ids = self._get_greenlist_ids(input_ids[:idx])
if entropy[idx] > self.entropy_threshold:
if curr_token in greenlist_ids:
green_token_count += 1
green_token_mask.append(True)
else:
green_token_mask.append(False)
else:
# when entropy is low; i.e., watermarking is not applied
green_token_mask.append(False)
score_dict.update(dict(num_tokens_generated=num_tokens_generated))
if return_num_tokens_scored:
score_dict.update(dict(num_tokens_scored=num_tokens_scored))
if return_num_green_tokens:
score_dict.update(dict(num_green_tokens=green_token_count))
if return_watermarking_fraction:
score_dict.update(
dict(watermarking_fraction=(num_tokens_scored / num_tokens_generated))
)
if return_green_fraction:
score_dict.update(
dict(green_fraction=(green_token_count / num_tokens_scored))
)
if return_z_score:
score_dict.update(
dict(
z_score=self._compute_z_score(green_token_count, num_tokens_scored)
)
)
if return_p_value:
z_score = score_dict.get("z_score")
if z_score is None:
z_score = self._compute_z_score(green_token_count, num_tokens_scored)
score_dict.update(dict(p_value=self._compute_p_value(z_score)))
if return_green_token_mask:
score_dict.update(dict(green_token_mask=green_token_mask))
return score_dict