-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPUMISVM.py
700 lines (626 loc) · 39.9 KB
/
PUMISVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
import joblib
import sys
sys.modules['sklearn.externals.joblib'] = joblib
from random import random, sample
import math
from copy import deepcopy
import numpy as np
from cvxopt import solvers as cvxopt_solvers
from cvxopt import matrix
import utils
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from matplotlib import lines
from qpsolvers import solve_qp
import statistics
from numpy import linalg as LA
from scipy.linalg import solve_sylvester
class PUMISVM:
def __init__(self, gammas= None, kernel_method = "linear", kernel_kwargs = None, scale_factor = "auto", version = 6, normal_int_ratio = None, thres= None, num_planes = 1, PU_kwargs = None):
"""
Parameters
----------
scale_factor : float
It is used for numerical scalability and it solves rank mismatch error in cvxopt_solvers.qp(P, q, G, h, A, b).
"""
self.version = version
if self.version == 0:
self.gammas = deepcopy(gammas) if gammas is not None else [10., 0.1, 1., 1., 0.95]
elif self.version == 1:
self.gammas = deepcopy(gammas) if gammas is not None else [1.5, 1., 1., 0.1, 0.95]
elif self.version == 4:
self.gammas = deepcopy(gammas) if gammas is not None else [1., 1., None, 0.1, None]
elif self.version == 6:
self.gammas = deepcopy(gammas) if gammas is not None else [1., 1., 1., 1., 1.]
elif self.version == "PU":
self.gammas = deepcopy(gammas) if gammas is not None else [1., 1., 1., 1., 1., 0.1, 0.1]
else:
raise Exception(NotImplementedError)
if self.version not in [4, 6]: assert(0. <= self.gammas[4] <= 1.)
self.kernel_method = kernel_method
self.kernel_kwargs = kernel_kwargs if kernel_kwargs is not None else {}
self.scale_factor = scale_factor
self.normal_int_ratio = normal_int_ratio if normal_int_ratio is not None else [-1.6, 1.6]
self.thres = thres
self.num_planes = num_planes
self.PU_kwargs = PU_kwargs
if self.version in ["PU"]:
assert(self.PU_kwargs is not None)
self.num_planes = 1
# self.kernel_method = "linear"
def kernel(self, *args, if_mix_PU = True, **kwargs):
if self.version in ["PU"] and if_mix_PU:
result_PU = self.kernel_inner(*args, if_use_H= True, kernel_method= "linear", **kwargs)
result_original = self.kernel_inner(*args, if_use_H= False, kernel_method= self.PU_kwargs["original_data_kernel"]["kernel_method"], kernel_kwargs= self.PU_kwargs["original_data_kernel"]["kernel_kwargs"], **kwargs)
assert(0 <= self.gammas[6] <= 1)
if False:
return self.gammas[6] * result_PU / (np.mean(np.abs(result_PU))) + (1. - self.gammas[6]) * result_original / (np.mean(np.abs(result_original)))
else:
return self.gammas[6] * result_PU + (1. - self.gammas[6]) * result_original
else:
return self.kernel_inner(*args, **kwargs)
def kernel_inner(self, X_target, kernel_method = None, kernel_kwargs = None, if_use_H = True):
"""Calculate inner products for K(X_target.T @ X_train)"""
if kernel_method is None:
kernel_method = self.kernel_method
if kernel_kwargs is None:
kernel_kwargs = self.kernel_kwargs
if self.version in ["PU"] and if_use_H:
X_target_loc = self.H @ X_target
X_concat_train_loc = self.H @ self.X_concat_train
else:
X_target_loc = X_target
X_concat_train_loc = self.X_concat_train
if kernel_method == "linear":
result1 = X_concat_train_loc.T @ X_target_loc
elif kernel_method == "poly":
result1 = (kernel_kwargs["c"] + X_concat_train_loc.T @ X_target_loc) ** kernel_kwargs["degree"]
elif kernel_method == "rbf":
if False:
result = np.zeros((X_concat_train_loc.shape[1], X_target_loc.shape[1]))
for it in range(X_concat_train_loc.shape[1]):
for ip in range(X_target_loc.shape[1]):
result[it, ip] = np.exp(-(1 / kernel_kwargs["sigma"] ** 2) * np.linalg.norm())
return result
else:
result1 = np.exp(-(1 / kernel_kwargs["sigma"] ** 2) * np.linalg.norm(X_concat_train_loc.T[:, np.newaxis] - X_target_loc.T[np.newaxis, :], axis=2) ** 2)
if True:
assert(np.allclose(np.exp(- (1 / kernel_kwargs["sigma"] ** 2) * np.sum((X_target_loc.T - X_concat_train_loc.T[:,np.newaxis])**2,axis=-1)), result1))
return result1.T
def fit(self, X, y, similarities = None, is_PL= None):
"""
Example
-------
X = [np.array([[1.2, 3.5], [0.6, -1.2], [3.6, -2.4]]).T, np.array([[0.7, -1.1], [1.2, 4.5], [2.0, 4.8], [9.2, -4.5]]).T, ...], (2 features: 3 instances, 4 instances, ...), len(X) = number of bags.
y = ["unlabeled", "A", ...], len(y) = number of bags.
is_PL = [1, 0, 1, 1, 0, ...], len(is_PL) = number of bags.
"""
if self.version in ["PU"]:
assert(is_PL is not None)
else:
assert(is_PL is None)
is_PL = [1 for i in range(len(y))]
assert(len(X) == len(y) == len(is_PL))
self.Ns_all = len(X)
self.Ns_class_acc = [0]
self.Ns_all_labeled = 0
self.nis_all = sum([x.shape[1] for x in X])
self.nis_bag = []
self.nis_class_acc_bag = []
self.nis_class_acc = [0]
self.N_factor = 1.0 ## self.Ns_all
self.unique_labels = list(set(y))
X_reorder = []
X_L = []
X_U = []
is_PL_reorder = []
self.start_end_idx_acc = []
idx_acc = 0
for label in self.unique_labels:
nis = []
self.nis_class_acc_bag.append(([0] if len(self.nis_class_acc_bag) == 0 else [self.nis_class_acc_bag[-1][-1]]))
for i in range(len(X)):
if y[i] == label:
X_reorder.append(X[i])
nis.append(X[i].shape[1])
self.start_end_idx_acc.append((idx_acc, idx_acc + X[i].shape[1]))
idx_acc += X[i].shape[1]
self.nis_class_acc_bag[-1].append(self.nis_class_acc_bag[-1][-1] + X[i].shape[1])
if is_PL[i] == 1:
X_L.append(X[i])
else:
X_U.append(X[i])
is_PL_reorder.append(is_PL[i])
self.nis_bag.append(nis)
self.nis_class_acc.append(self.nis_class_acc[-1] + sum(nis))
assert(self.nis_class_acc[-1] - self.nis_class_acc[-2] == self.nis_class_acc_bag[-1][-1] - self.nis_class_acc_bag[-1][0])
self.Ns_class_acc.append(self.Ns_class_acc[-1] + len(nis))
if label != "unlabeled":
self.Ns_all_labeled += len(nis)
self.X_concat_train = np.concatenate(X_reorder, axis= 1)
assert(self.X_concat_train.shape[1] == self.nis_all)
if self.version not in ["PU"]:
iters = 1
else:
X_L = np.concatenate(X_L, axis= 1)
X_U = np.concatenate(X_U, axis= 1)
iters = self.PU_kwargs["iters"]
self.Z_L = np.random.random((self.PU_kwargs["d_z"], X_L.shape[1]))
# self.G = np.random.random((self.PU_kwargs["d_z"], self.nis_all))
self.Lambda_list = [np.random.random((self.PU_kwargs["d_z"], self.PU_kwargs["d_z"]))]
self.mu_list = deepcopy(self.PU_kwargs["mus_list"])
self.D_list = [np.zeros((X_U.shape[1], X_U.shape[1]))]
self.F = np.random.random((self.X_concat_train.shape[0], self.PU_kwargs["d_z"]))
self.H = np.random.random((self.PU_kwargs["d_z"], self.X_concat_train.shape[0]))
lambdas = np.random.random((2 * self.nis_all))
for it in range(iters):
if self.version in ["PU"]: ## PU learning variables
Z_U_T = (self.H @ X_U).T
idx_acc = 0
for i in range(len(is_PL_reorder)):
if is_PL_reorder[i] == 0:
idx_cut = (idx_acc, idx_acc + self.start_end_idx_acc[i][1] - self.start_end_idx_acc[i][0])
if it == 0: assert(not np.any(self.D_list[0][idx_cut[0] : idx_cut[1], idx_cut[0] : idx_cut[1]]))
value = ((LA.norm(Z_U_T[idx_cut[0] : idx_cut[1], :], 'fro') + self.PU_kwargs["delta"]) ** (-0.5)) / 2
for j in range(idx_cut[0], idx_cut[1]):
self.D_list[0][j, j] = value
idx_acc += self.start_end_idx_acc[i][1] - self.start_end_idx_acc[i][0]
assert(self.D_list[0][-1, -1] != 0)
self.Z_L = LA.inv(self.F.T @ self.F) @ self.F.T @ X_L
self.F = solve_sylvester(self.mu_list[0] * self.H.T @ self.H, 2 * self.gammas[4] * self.Z_L @ self.Z_L.T, 2 * self.gammas[4] * X_L @ self.Z_L.T + self.mu_list[0] * self.H.T - self.H.T @ self.Lambda_list[0])
lambdas_epsilon = lambdas[0:self.nis_all]
lambdas_delta = lambdas[self.nis_all:2*self.nis_all]
self.H = (np.outer(self.H @ self.X_concat_train @ (lambdas_epsilon - lambdas_delta), (lambdas_epsilon - lambdas_delta).T) @ self.X_concat_train.T + self.mu_list[0] * self.F.T - self.Lambda_list[0] @ self.F.T) @ LA.inv(self.mu_list[0] * self.F @ self.F.T + 2 * self.gammas[5] * X_U @ self.D_list[0] @ X_U.T)
self.Lambda_list[0] = self.mu_list[0] * (np.identity(self.PU_kwargs["d_z"]) - self.H @ self.F)
self.mu_list[0] *= self.PU_kwargs["rho"]
if self.version in ["PU"] and it < iters - 1:
XTX = self.kernel(self.X_concat_train, kernel_method = "linear", if_mix_PU = False)
else:
XTX = self.kernel(self.X_concat_train)
self.lambdas_list = []
self.lambdas_epsilon_list = []
self.lambdas_delta_list = []
self.avg_response_train_list = []
self.h_is_k_list = []
self.h_std_k_list = []
self.h_k_list = []
for g in range(self.num_planes):
C1 = np.zeros((self.nis_all, self.nis_all))
C2 = np.zeros(self.nis_all)
C3 = 0.
inv_S_k = []
M_k = []
P_k = []
U_k = []
const_base_k = []
if self.version == 1:
M_L = np.zeros((self.Ns_all_labeled, self.nis_all))
S_L = np.zeros((self.Ns_all_labeled, self.Ns_all_labeled))
elif self.version == 0:
for k in range(len(self.unique_labels)):
## Create M_k, P_k, U_k
size_Ik = self.Ns_class_acc[k + 1] - self.Ns_class_acc[k]
if self.unique_labels[k] == "unlabeled":
assert(not np.any(C1[self.nis_class_acc[k]:self.nis_class_acc[k + 1], self.nis_class_acc[k]:self.nis_class_acc[k + 1]]))
assert(not np.any(C2[self.nis_class_acc[k]:self.nis_class_acc[k + 1]]))
# self.C1[self.nis_class_acc[k]:self.nis_class_acc[k + 1], self.nis_class_acc[k]:self.nis_class_acc[k + 1]] = np.zeros((sum(self.nis_bag[k]), sum(self.nis_bag[k])))
# self.C2[self.nis_class_acc[k]:self.nis_class_acc[k + 1]] = np.zeros(sum(self.nis_bag[k]))
# self.C3 += 0.
M_k.append(None)
inv_S_k.append(None)
P_k.append(None)
U_k.append(None)
const_base_k.append(None)
else:
M_k_this = np.zeros((size_Ik, sum(self.nis_bag[k])))
P_k_this = np.zeros((sum(self.nis_bag[k]), sum(self.nis_bag[k])))
S_k_this = np.zeros((size_Ik, size_Ik))
if False:
if similarities is None:
for ia in range(size_Ik):
for ib in range(size_Ik):
if ia == ib:
S_k_this[ia, ib] = 0.
else:
S_k_this[ia, ib] = 1. / max(np.mean(np.abs(np.mean(X_reorder[self.Ns_class_acc[k] + ia], axis = 1) - np.mean(X_reorder[self.Ns_class_acc[k] + ib], axis = 1))), 1e-16)
else:
raise Exception(NotImplementedError)
if k == len(self.unique_labels) - 1: assert(self.Ns_class_acc[k] + ia == self.Ns_all - 1 and S_k_this[-1, -2] != 0)
if False:
S_k_this = (S_k_this - np.min(S_k_this)) / (np.max(S_k_this) - np.min(S_k_this))
else:
for i in range(S_k_this.shape[0]):
S_k_this[i, :] = S_k_this[i, :] / np.sum(S_k_this[i, :])
else:
if False:
S_k_this = S_k_this + (1 / (size_Ik - 1))
S_k_this = S_k_this - np.identity(size_Ik) * (1 / (size_Ik - 1))
else:
S_k_this = S_k_this + (1 / size_Ik)
if True:
if False:
inv_S_k_this = np.linalg.inv(S_k_this - np.identity(size_Ik))
else:
print(f"Exact inverse of inv_S_k_this for k = {k} does not exits.")
inv_S_k_this = np.linalg.pinv(S_k_this - np.identity(size_Ik))
inv_S_k_this = (inv_S_k_this + inv_S_k_this.T) / 2.
inv_gap = np.abs((S_k_this - np.identity(size_Ik)) @ inv_S_k_this - np.identity(size_Ik))
print(f"Inv gap is {np.mean(inv_gap)}.")
inv_S_k.append(inv_S_k_this)
D_sk = np.zeros((size_Ik, size_Ik))
s_Ik = np.zeros(self.nis_class_acc[k + 1] - self.nis_class_acc[k])
for i in range(size_Ik):
D_sk[i, i] = 1 / (2 * self.gammas[2] * (S_k_this[i, i] - 1))
assert(not np.any(s_Ik[self.nis_class_acc_bag[k][i]:self.nis_class_acc_bag[k][i+1]]))
s_Ik[self.nis_class_acc_bag[k][i]:self.nis_class_acc_bag[k][i+1]] = (1 / (2 * self.gammas[2] * (S_k_this[i, i] - 1))) ** 2
const_base_k.append(D_sk)
U_k_this = inv_S_k_this @ const_base_k[k]
ni_idx = 0
for ini in range(len(self.nis_bag[k])):
M_k_this[ini, ni_idx:(ni_idx + self.nis_bag[k][ini])] = 1.
P_k_this[ni_idx:(ni_idx + self.nis_bag[k][ini]), ni_idx:(ni_idx + self.nis_bag[k][ini])] = (1 / (2 * self.gammas[2] * (S_k_this[ini, ini] - 1))) ** 2
ni_idx = ni_idx + self.nis_bag[k][ini]
assert(not np.any(C1[self.nis_class_acc[k]:self.nis_class_acc[k + 1], self.nis_class_acc[k]:self.nis_class_acc[k + 1]]))
C1[self.nis_class_acc[k]:self.nis_class_acc[k + 1], self.nis_class_acc[k]:self.nis_class_acc[k + 1]] = - M_k_this.T @ U_k_this @ M_k_this + self.gammas[2] * P_k_this
assert(not np.any(C2[self.nis_class_acc[k]:self.nis_class_acc[k + 1]]))
C2[self.nis_class_acc[k]:self.nis_class_acc[k + 1]] = - 2 * self.gammas[2] * self.gammas[3] * s_Ik.T ## + 2 * self.gammas[3] * np.ones(size_Ik) @ U_k_this @ M_k_this term has been removed.
# C3 += - np.sum(U_k_this) * (self.gammas[3] ** 2) + (const_base_k[k] ** 2) * self.gammas[2] * size_Ik * (self.gammas[3] ** 2) ## We don't need C3 which is constant.
M_k.append(M_k_this)
P_k.append(P_k_this)
U_k.append(U_k_this)
elif self.version in [6, "PU"]:
I_const = np.concatenate([np.identity(self.nis_all), - np.identity(self.nis_all)], axis= 1)
assert(I_const.shape[1] == 2 * self.nis_all)
U_L = np.zeros((2 * self.nis_all, 2 * self.nis_all))
for k in range(len(self.unique_labels)):
if self.unique_labels[k] != "unlabeled":
u_is= []
u_i_sum = 0.
for i in range(len(self.nis_class_acc_bag[k]) - 1):
n_i = self.nis_class_acc_bag[k][i + 1] - self.nis_class_acc_bag[k][i]
slice_n_i = slice(self.nis_class_acc_bag[k][i], self.nis_class_acc_bag[k][i + 1])
c1 = np.ones(2 * self.nis_all)
c1[slice_n_i] = 1 / (2 * self.gammas[0] * n_i)
c1[self.nis_class_acc_bag[k][i] + self.nis_all : self.nis_class_acc_bag[k][i + 1] + self.nis_all] = - 1 / (2 * self.gammas[1] * n_i)
u_i = c1 + (1 / (n_i * self.N_factor)) * np.ones(n_i).T @ XTX[slice_n_i, :] @ I_const
u_is.append(u_i)
u_i_sum = u_i_sum + u_i
assert(c1[-1] != 0)
u_i_sum = u_i_sum / (len(self.nis_class_acc_bag[k]) - 1)
for i in range(len(self.nis_class_acc_bag[k]) - 1):
U_iK = np.outer(u_i_sum - u_is[i], u_i_sum - u_is[i])
assert(U_iK.shape[1] == 2 * self.nis_all)
U_L = U_L + U_iK
assert(U_L.shape[1] == 2 * self.nis_all)
if self.version not in [4, 6, "PU"]:
A = np.zeros((self.Ns_all - self.Ns_all_labeled, 2 * self.nis_all))
else:
A = np.zeros((self.Ns_all, 2 * self.nis_all))
instances_acc = 0
bags_acc = 0
sum_S_L = 0
for k in range(len(self.unique_labels)):
size_Ik = self.Ns_class_acc[k + 1] - self.Ns_class_acc[k]
if self.version == 1 and self.unique_labels[k] != "unlabeled": ## S_L is normalized below
if False:
if similarities is None:
for ia in range(bags_acc, bags_acc + len(self.nis_bag[k])):
for ib in range(bags_acc, bags_acc + len(self.nis_bag[k])):
if ia == ib:
self.S_L[ia, ib] = 0.
else:
self.S_L[ia, ib] = 1. / max(np.mean(np.abs(np.mean(X_reorder[ia], axis = 1) - np.mean(X_reorder[ib], axis = 1))), 1e-16)
else:
raise Exception(NotImplementedError)
else:
bags_slice = slice(bags_acc, bags_acc + self.Ns_class_acc[k+1] - self.Ns_class_acc[k])
if True:
S_L[bags_slice, bags_slice] = 1 / (size_Ik - 1)
S_L[bags_slice, bags_slice] += - np.identity(self.Ns_class_acc[k+1] - self.Ns_class_acc[k]) * 1 / (size_Ik - 1)
sum_S_L += (size_Ik - 1) * size_Ik / (size_Ik - 1)
else:
S_L[bags_slice, bags_slice] = 1 / (size_Ik)
sum_S_L += size_Ik
# assert(np.sum(self.S_L) == sum([(size_Ik ** 2 / (size_Ik - 1)) for ]))
for i in range(len(self.nis_bag[k])):
if self.unique_labels[k] == "unlabeled" and self.version not in [4, 6, "PU"]:
A[i, instances_acc:instances_acc+self.nis_bag[k][i]] = 1.
A[i, self.nis_all+instances_acc:self.nis_all+instances_acc+self.nis_bag[k][i]] = -1.
else:
if self.version == 1:
M_L[bags_acc, instances_acc:instances_acc+self.nis_bag[k][i]] = 1.
bags_acc += 1
instances_acc += self.nis_bag[k][i]
if self.version == 1:
k = self.unique_labels.index("unlabeled")
assert(not np.any(M_L[:, self.nis_class_acc[k]:self.nis_class_acc[k+1]]))
if self.version == 1:
# assert(sum_S_L - 0.0001 < np.sum(S_L) < sum_S_L + 0.0001)
assert((self.unique_labels[0] == "unlabeled" or S_L[0, 1] != 0) and (self.unique_labels[-1] == "unlabeled" or S_L[-1, -2] != 0))
assert(bags_acc == self.Ns_all_labeled and ((self.unique_labels[-1] == "unlabeled" and M_L[0, 0] == 1) or M_L[-1, -1] == 1.))
if False:
assert(self.unique_labels[-1] == "unlabeled" or S_L[-1, -2] == 1. / max(np.mean(np.abs(np.mean(X_reorder[self.Ns_all_labeled - 1], axis = 1) - np.mean(X_reorder[self.Ns_all_labeled - 2], axis = 1))), 1e-16))
if False:
for i in range(self.Ns_all_labeled):
if np.sum(S_L[i]) != 0:
S_L[i] = S_L[i] / np.sum(S_L[i])
else: ## This will alleviate the very large h_k problem. The magnitude of S_L or S_k heavily impacts the result.
S_L = (S_L - np.min(S_L)) / (np.max(S_L) - np.min(S_L))
try:
S_LT_inv = np.linalg.inv(np.identity(self.Ns_all_labeled) - S_L.T)
except:
print(f"Exact inverse of S_LT does not exits.")
S_LT_inv = np.linalg.pinv(np.identity(self.Ns_all_labeled) - S_L.T)
try:
S_L_inv = np.linalg.inv(np.identity(self.Ns_all_labeled) - S_L)
except:
print(f"Exact inverse of S_L does not exits.")
S_L_inv = np.linalg.pinv(np.identity(self.Ns_all_labeled) - S_L)
inv_gap = np.abs((np.identity(self.Ns_all_labeled) - S_L.T) @ S_LT_inv - np.identity(self.Ns_all_labeled))
print(f"Inv gap is {np.mean(inv_gap)}.")
S_Lp = S_LT_inv.T @ S_LT_inv
assert(np.allclose(S_Lp, S_Lp.T))
assert(S_L[1, 0] > 0 and S_L[-2, -1] > 0)
M_L_concat = np.concatenate([- M_L, M_L], axis= 1)
if self.version in [4, 6, "PU"]:
for bi in range(len(self.start_end_idx_acc)):
assert(not np.any(A[:, self.start_end_idx_acc[bi][0]:self.start_end_idx_acc[bi][1]]))
assert(not np.any(A[:, self.nis_all+self.start_end_idx_acc[bi][0]:self.nis_all+self.start_end_idx_acc[bi][1]]))
A[bi, self.start_end_idx_acc[bi][0] : self.start_end_idx_acc[bi][1]] = 1.
A[bi, self.nis_all + self.start_end_idx_acc[bi][0] : self.nis_all + self.start_end_idx_acc[bi][1]] = - 1.
# if is_PL_reorder[bi] == 1:
# A[bi, self.start_end_idx_acc[bi][0]:self.start_end_idx_acc[bi][1]] = self.gammas[3]
# A[bi, self.nis_all + self.start_end_idx_acc[bi][0] : self.nis_all + self.start_end_idx_acc[bi][1]] = - self.gammas[3]
# else:
# A[bi, self.start_end_idx_acc[bi][0]:self.start_end_idx_acc[bi][1]] = 0.
# A[bi, self.nis_all + self.start_end_idx_acc[bi][0] : self.nis_all + self.start_end_idx_acc[bi][1]] = 0.
assert(A[-1, -1] == - 1.)
K = (- 1 / (2 * self.N_factor)) * XTX
if self.version in [0, 4, 6, "PU"]:
if self.version == 0:
K = K + C1
P = np.zeros((2 * self.nis_all, 2 * self.nis_all))
P[0:self.nis_all, 0:self.nis_all] = K - (1 / (4 * self.gammas[0])) * np.identity(self.nis_all)
P[0:self.nis_all, self.nis_all:2*self.nis_all] = -K
P[self.nis_all:2*self.nis_all, 0:self.nis_all] = -K
P[self.nis_all:2*self.nis_all, self.nis_all:2*self.nis_all] = K - (1 / (4 * self.gammas[1])) * np.identity(self.nis_all)
# P = (P + P.T) / 2.
if self.version == 0:
q = np.concatenate([C2, -C2])
elif self.version in [6, "PU"]:
P = P - self.gammas[2] * U_L
if g > 0:
LX_prev = + (4 * self.gammas[4] / self.num_planes) * (self.lambdas_epsilon_list[-1] - self.lambdas_delta_list[-1]) @ K ## - sign is already included in K.
q = np.concatenate([LX_prev, -LX_prev])
elif self.version == 1:
P = (- 1 / (8 * self.gammas[2])) * M_L_concat.T @ S_Lp @ M_L_concat
P[0:self.nis_all, 0:self.nis_all] += K - (1 / (4 * self.gammas[0])) * np.identity(self.nis_all)
P[0:self.nis_all, self.nis_all:2*self.nis_all] += -K
P[self.nis_all:2*self.nis_all, 0:self.nis_all] += -K
P[self.nis_all:2*self.nis_all, self.nis_all:2*self.nis_all] += K - (1 / (4 * self.gammas[1])) * np.identity(self.nis_all)
q = - (self.gammas[3] / (4 * self.gammas[2])) * np.ones(self.Ns_all_labeled) @ S_Lp @ M_L_concat
assert(np.allclose(P, P.T))
h = np.zeros(2 * self.nis_all)
G = - np.identity(2 * self.nis_all)
if self.version not in [4, 6, "PU"]:
b = np.ones(self.Ns_all - self.Ns_all_labeled) * self.gammas[3]
else:
b = np.ones(self.Ns_all) * self.gammas[3]
if self.version in ["PU"]:
for i in range(len(is_PL_reorder)):
if is_PL_reorder[i] == 0:
b[i] = 0.
# b[i] = - self.gammas[3]
## put - to convert maximization to minimization problem. Multiply * 2 to match the format in https://cvxopt.org/userguide/coneprog.html#quadratic-programming
if self.scale_factor == "auto":
self.scale_factor = 1. / np.mean(np.abs(P))
P = self.scale_factor * utils.get_near_psd(-P * 2)
if self.version not in [4, 6, "PU"] or (self.version in [6, "PU"] and g > 0):
q = -self.scale_factor * q
else:
q = np.zeros(2 * self.nis_all)
if False:
G = self.scale_factor * G
h = self.scale_factor * h
A = self.scale_factor * A
b = self.scale_factor * b
if True:
P = matrix(P)
q = matrix(q)
G = matrix(G)
h = matrix(h)
A = matrix(A)
b = matrix(b)
cvxopt_solvers.options['show_progress'] = True
# cvxopt_solvers.options['abstol'] = 1e-10
# cvxopt_solvers.options['reltol'] = 1e-10
# cvxopt_solvers.options['feastol'] = 1e-10
sol = cvxopt_solvers.qp(P, q, G, h, A, b)
if False:
lambdas = np.array(sol['x'])[:, 0]
else:
lambdas = np.ravel(sol['x'])
assert(abs(0.5 * lambdas.T @ np.array(P) @ lambdas + np.ravel(q) @ lambdas - sol['dual objective']) < abs(sol['dual objective'] * 1e-2))
else:
lambdas = solve_qp(P, q, G, h, A, b, solver= "osqp") ## Set the `solver` keyword argument to one of the available solvers in ['cvxopt', 'ecos', 'osqp', 'quadprog']
self.lambdas_list.append(lambdas)
lambdas_epsilon = lambdas[0:self.nis_all]
lambdas_delta = lambdas[self.nis_all:2*self.nis_all]
# X_lambda_eps_minus_delta = self.X_concat @ (lambdas_epsilon - lambdas_delta)
self.lambdas_epsilon_list.append(lambdas_epsilon)
self.lambdas_delta_list.append(lambdas_delta)
avg_response_train = {}
for k in range(len(self.unique_labels)):
avg_response_train[self.unique_labels[k]] = np.mean(self.kernel(self.X_concat_train[:, self.nis_class_acc[k]:self.nis_class_acc[k+1]]) @ ((1 / self.N_factor) * (lambdas_epsilon - lambdas_delta)))
## Calculate h_k
## h_U for unlabeled X
if self.version == 1:
h_L = (1 / (4 * self.gammas[2])) * S_L_inv @ S_LT_inv @ (- M_L @ (lambdas_epsilon - lambdas_delta) + self.gammas[3] * np.ones(self.Ns_all_labeled))
h_U_k_sum = {}
h_is_k = {label: [] for label in self.unique_labels}
h_std_k = {}
for k in range(len(self.unique_labels)):
h_U_k_sum_this = 0
assert(len(self.nis_class_acc_bag[k]) - 1 == self.Ns_class_acc[k + 1] - self.Ns_class_acc[k])
for i in range(len(self.nis_class_acc_bag[k]) - 1):
h_i = 0.
for j in range(self.nis_class_acc_bag[k][i], self.nis_class_acc_bag[k][i+1]):
h_i += (1. / self.N_factor) * XTX[j, :] @ (lambdas_epsilon - lambdas_delta)
epsilon = (1 / (2 * self.gammas[0])) * lambdas_epsilon[j]
delta = (1 / (2 * self.gammas[1])) * lambdas_delta[j]
if False:
if epsilon > delta:
h_i += epsilon
else:
h_i += -delta
else:
h_i += epsilon - delta
h_i = (1. / (self.nis_class_acc_bag[k][i+1] - self.nis_class_acc_bag[k][i])) * h_i
h_U_k_sum_this += h_i
h_is_k[self.unique_labels[k]].append(h_i)
h_U_k_sum[k] = h_U_k_sum_this
h_std_k[self.unique_labels[k]] = statistics.stdev(h_is_k[self.unique_labels[k]])
bags_acc = 0
h_k = {}
h_k["unlabeled"] = (1. / self.Ns_all) * sum(list(h_U_k_sum.values()))
for k in range(len(self.unique_labels)):
size_Ik = self.Ns_class_acc[k + 1] - self.Ns_class_acc[k]
if self.unique_labels[k] != "unlabeled":
if self.version == 0:
if True:
h_k[self.unique_labels[k]] = (1 - self.gammas[4]) * np.mean(inv_S_k[k] @ const_base_k[k] @ (np.ones(size_Ik) * self.gammas[3] - M_k[k] @ (lambdas_epsilon - lambdas_delta)[self.nis_class_acc[k]:self.nis_class_acc[k + 1]])) + self.gammas[4] * (1. / (self.Ns_class_acc[k + 1] - self.Ns_class_acc[k])) * h_U_k_sum[k]
else:
h_k[self.unique_labels[k]] = h_U_k_sum[k] / (self.Ns_class_acc[k + 1] - self.Ns_class_acc[k])
elif self.version == 1:
h_k[self.unique_labels[k]] = (1. - self.gammas[4]) * np.mean(h_L[bags_acc: bags_acc + self.Ns_class_acc[k+1] - self.Ns_class_acc[k]]) + self.gammas[4] * (h_U_k_sum[k] / size_Ik if False else (1. / self.Ns_all) * sum(list(h_U_k_sum.values())))
bags_acc += self.Ns_class_acc[k+1] - self.Ns_class_acc[k]
else:
h_k[self.unique_labels[k]] = (1. / size_Ik) * h_U_k_sum[k]
if False:
for k in range(len(self.unique_labels)):
print("Debugging..")
h_k[self.unique_labels[k]] = avg_response_train[self.unique_labels[k]]
# h_k["unlabeled"] = (h_U + sum([(self.Ns_class_acc[k + 1] - self.Ns_class_acc[k]) * h_k[self.unique_labels[k]] for k in range(len(self.unique_labels)) if self.unique_labels[k] != "unlabeled"])) / self.Ns_all
if self.version == 1: assert(bags_acc == self.Ns_all_labeled)
self.avg_response_train_list.append(avg_response_train)
self.h_is_k_list.append(h_is_k)
self.h_std_k_list.append(h_std_k)
self.h_k_list.append(h_k)
def predict(self, X, y):
y_pred = []
responses= [[] for i in range(len(X))]
anomaly_scores = [[] for i in range(len(X))]
for g in range(self.num_planes):
const_vec = (1 / self.N_factor) * (self.lambdas_epsilon_list[g] - self.lambdas_delta_list[g])
for i in range(len(X)):
response = np.mean(self.kernel(X[i]) @ const_vec)
label = y[i] if y[i] in self.unique_labels else "unlabeled"
threshold = self.h_k_list[g][label]
if self.version not in [4, 6, "PU"]:
anomaly_scores[i].append(response - threshold)
else:
anomaly_scores[i].append((response - threshold) / self.h_std_k_list[g][label])
responses[i].append(response)
if False:
print(y_pred)
# print(responses)
anomaly_scores_mean = [np.mean(scores_G) for scores_G in anomaly_scores]
responses_mean = [np.mean(response_G) for response_G in responses]
for i in range(len(anomaly_scores_mean)):
label = y[i] if y[i] in self.unique_labels else "unlabeled"
if self.version not in [4, 6, "PU"]:
y_pred.append(int(anomaly_scores_mean[i] > 0) * 2 - 1)
else:
y_pred.append(int(self.normal_int_ratio[0] < anomaly_scores_mean[i] < self.normal_int_ratio[1]) * 2 - 1)
if self.thres is not None:
y_pred = self.thres.eval([- score for score in responses_mean]) ## All threshold functions return a binary array where inliers and outliers are represented by a 0 and 1 respectively., https://github.com/KulikDM/pythresh#ocsvm -> may be wrong??
# y_pred = np.where(y_pred == 1, -1, 1)
y_pred = np.where(y_pred == 1, 1, -1)
return y_pred
def get_abnormality_response(self, X, y):
abnormality_bags= []
for i in range(len(X)):
abnormality_instances = [[] for ii in range(X[i].shape[1])]
for g in range(self.num_planes):
responses_instances = self.kernel(X[i]) @ ((1 / self.N_factor) * (self.lambdas_epsilon_list[g] - self.lambdas_delta_list[g]))
label = y[i] if y[i] in self.unique_labels else "unlabeled"
threshold = self.h_k_list[g][label]
for ii in range(responses_instances.shape[0]):
if self.version not in [4, 6, "PU"]:
abnormality_instances[ii].append(max(responses_instances[ii] - threshold, 0))
else:
abnormality_instances[ii].append(abs(responses_instances[ii] - threshold) / self.h_std_k_list[g][label])
abnormality_bags.append([np.mean(abnorm_planes) for abnorm_planes in abnormality_instances])
return abnormality_bags
def plot_decision_boundary(self, X, ys_aux, ys_positive, class_to_color, circles_dicts = None, min_max_dict = None, is_upper = True, lines_lst = None, xlim_set= None, ylim_set= None, path_to_save = None):
assert(X.shape[1] == ys_aux.shape[0] == ys_positive.shape[0])
if_imshow = False
cls_list = list(set(ys_aux.tolist()))
cls_list = sorted(cls_list, key=lambda x: self.h_k_list[0][x])
colors = np.array([class_to_color[ys_aux[i]] for i in range(ys_aux.shape[0])])
plt.scatter(X[0, ys_positive == 1], X[1, ys_positive == 1], c=colors[ys_positive == 1], s=50, alpha=.5, marker= "o")
plt.scatter(X[0, ys_positive == -1], X[1, ys_positive == -1], c=colors[ys_positive == -1], s=50, alpha=.5, marker= "^")
ax = plt.gca()
if circles_dicts is not None and not if_imshow:
for circle_info in circles_dicts:
if circle_info is not None:
# circle_info = {"xy": , "radius": , "color": , }
e = Circle(**circle_info) ## https://stackoverflow.com/questions/4143502/how-to-do-a-scatter-plot-with-empty-circles-in-python
# ax.add_artist(e)
ax.add_patch(e)
if lines_lst is not None and not if_imshow:
for line in lines_lst:
ax.add_line(line)
if xlim_set is not None:
ax.set_xlim(*xlim_set)
if ylim_set is not None:
ax.set_ylim(*ylim_set)
xlim = ax.get_xlim()
ylim = ax.get_ylim()
# create grid to evaluate model
xx = np.linspace(xlim[0], xlim[1], 120)
yy = np.linspace(ylim[0], ylim[1], 120)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()])
if min_max_dict is not None:
xy = utils.min_max_scale(xy, min_max_dict = min_max_dict, if_reverse= False)
Z = (self.kernel(xy) @ ((1 / self.N_factor) * (self.lambdas_epsilon_list[0] - self.lambdas_delta_list[0]))).T.reshape(XX.shape)
# Z = self._decision_function(xy).reshape(XX.shape)
# plot decision boundary and margins
h_k_int = max(list(self.h_k_list[0].values())) - min(list(self.h_k_list[0].values()))
colors = []
levels = []
for cls in cls_list:
max_hi = self.h_k_list[0][cls] + self.normal_int_ratio[1] * self.h_std_k_list[0][cls]
min_hi = self.h_k_list[0][cls] + self.normal_int_ratio[0] * self.h_std_k_list[0][cls]
colors.append(class_to_color[cls])
if True:
if is_upper: levels.append(max_hi)
else: levels.append(min_hi)
else:
colors.append(class_to_color[cls])
levels.append(max_hi)
levels.append(min_hi)
levels_rank = np.argsort(levels)
colors = [colors[i] for i in levels_rank]
levels = [levels[i] for i in levels_rank]
# colors = [class_to_color[cls] for cls in cls_list]
# levels = [self.h_k_list[0][cls] for cls in cls_list]
if False:
# colors += ["green", "brown", "yellow"]
# levels += [max(list(self.h_k_list[0].values())) + h_k_int * (0.2 * (i + 1)) for i in range(3)]
colors = ["green", "brown", "yellow"] + colors
levels = [min(list(self.h_k_list[0].values())) - h_k_int + h_k_int * (0.33 * i) for i in range(3)] + levels
if not if_imshow:
ax.contour(XX, YY, Z, colors= colors, levels= levels, alpha=0.5,
linestyles=['--' for cls in cls_list], linewidths=[2.0 for cls in cls_list])
else:
plt.imshow(Z, cmap= "viridis")
plt.colorbar()
# highlight the support vectors
# ax.scatter(X[:, 0][self.alpha > 0.], X[:, 1][self.alpha > 0.], s=50, linewidth=1, facecolors='none', edgecolors='k')
if not path_to_save:
plt.show()
else:
plt.savefig(path_to_save)
plt.clf()