-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
271 lines (246 loc) · 10.1 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Written by Hoon Seo, seohoon@mines.edu, with MIT license
# Tested on MacOSX, Pycharm, Python 3.6.4
import csv
import copy
# minmax_info = []
########################### Filling Missing value and adjusting length to 70 starts ###########################
def csv_to_raw():
with open(r'./data/marketData.csv', 'r') as f:
raw = []
csvReader = csv.reader(f)
for line in csvReader:
raw.append(line)
return raw
def raw_to_list(raw):
list = []
for i in range(len(raw)):
if int(raw[i][3]) <= int(raw[i][4]):
min = int(raw[i][3])
else:
min = int(raw[i][4])
price = []
volume = []
for j in range(5, 5 + min):
splited = raw[i][j].split('@')
if splited[1] == None or splited[1] == 'None':
price.append(None)
else:
price.append(float(splited[1]))
if splited[2] == None or splited[2] == 'None':
volume.append(None)
else:
volume.append(float(splited[2]))
list.append([price, volume])
return list #(n, 2, 70) price, volume
def get_avg(list, sidx, left=True):
sum = 0.
num = 0.
valid = False
if left:
for i in range(sidx):
if(type(list[i])==type(2.) and list[i]>0.):
valid = True
sum = sum + list[i]
num = num + 1.
if valid:
return [num, sum/num]
else:
return False
else:
for i in range(sidx+1, len(list)):
if (type(list[i]) == type(2.) and list[i]>0.):
valid = True
sum = sum + list[i]
num = num + 1.
if valid:
return [num, sum/num]
else:
return False
def fill_missing_value_to_list(list):
result = []
for i in range(len(list)):
if(type(list[i]) == type(2.) and list[i]>0.):
result.append(list[i])
else:
left_avg = get_avg(list, i, True)
right_avg = get_avg(list, i, False)
if left_avg != False and right_avg != False:
result.append((left_avg[0]*left_avg[1]+right_avg[0]*right_avg[1])/(left_avg[0]+right_avg[0]))
elif left_avg == False and right_avg != False:
result.append(right_avg[1])
elif left_avg != False and right_avg == False:
result.append(left_avg[1])
else:
return []
return result
def apply_filling_missing_value(list, no_e = 70):
result = []
for i in range(len(list)):
row = copy.deepcopy(list[i])
diff = no_e-len(list[i][0]) #70 - ?
if diff>0:
all_True = True
for j in range(len(list[i])):
if get_avg(list[i][j], len(list[i][j]), True) == False:
all_True = False
if all_True:
for j in range(diff):
for k in range(len(list[i])):
row[k].append(get_avg(list[i][k], len(list[i][k]), True))
elif diff<0:
for j in range(-diff):
for k in range(len(list[i])):
row[k].pop()
for j in range(len(row)):
row[j] = copy.deepcopy(fill_missing_value_to_list(row[j]))
any_not_70 = False
for j in range(len(row)):
if len(row[j]) != no_e:
any_not_70 = True
if not any_not_70:
result.append(row)
return result #(n, 2, 70) price, volume
# result = apply_filling_missing_value(raw_to_list(csv_to_raw()))
# # result = raw_to_list(csv_to_raw())
# for i in result:
# print('\n')
# for j in i:
# print(j)
########################### Normalization Starts ###########################
def minmax_normalization(data, mmrange = None):
if mmrange == None:
mmrange = (0., 1.)
time = []
for i in range(70):
time.append(((i + 1.)/70.))
result = []
for i in range(len(data)):
all_same = False
row = []
maxi = 1
mini = 1
for j in range(len(data[i])):
column = []
maxi = float(max(data[i][j]))
mini = float(min(data[i][j]))
if maxi == mini:
all_same = True
break
for k in range(len(data[i][j])):
column.append(float(data[i][j][k] - mini)*(mmrange[1]-mmrange[0])/(maxi-mini) + mmrange[0])
row.append(column)
if not all_same:
# minmax_info.append([mini, maxi])
row.append(time)
result.append(row)
return result #(n, 3, 70) price, volume, time
def get_data(mmrange = None):
if mmrange == None:
mmrange = (0., 1.)
return minmax_normalization(apply_filling_missing_value(raw_to_list(csv_to_raw())), mmrange)
# result = get_data()
# for i in range(len(result)):
# print('\n')
# for j in range(len(result[i])):
# print(result[i][j])
########################### Preprocessing for data for prediction ###########################
def sample_to_list(sample, start_min = 0, steps = 10): #start_min = now - listing_time, start_min >= 0 or = current time just
list = []
for i in range(len(sample)):
splited = sample[i].split('@')
if splited[1] == None or splited[1] == 'None':
# list.append([None, float(splited[2]), max(0., (10. - start_min - len(sample) + float(i))/70.)])
list.append([None, float(splited[2]), (10. + start_min - len(sample) + float(i) + 1.) / 70.])
elif splited[2] == None or splited[2] == 'None':
# list.append([float(splited[1]), None, max(0., (10. - start_min - len(sample) + float(i))/70.)])
list.append([float(splited[1]), None, (10. + start_min - len(sample) + float(i) + 1.) / 70.])
else:
# list.append([float(splited[1]), float(splited[2]), max(0., (10. - start_min - len(sample) + float(i))/70.)])
list.append([float(splited[1]), float(splited[2]), (10. + start_min - len(sample) + float(i) + 1.) / 70.])
return list #(n, 3) price, volume, time
def get_avg_vertical(list, sidx, feature, up=True):
sum = 0.
num = 0.
valid = False
if up:
for i in range(sidx):
if(type(list[i][feature])==type(2.) and list[i][feature]>0.):
valid = True
sum = sum + list[i][feature]
num = num + 1.
if valid:
return [num, sum/num]
else:
return False
else:
for i in range(sidx+1, len(list)):
if (type(list[i][feature]) == type(2.) and list[i][feature]>0.):
valid = True
sum = sum + list[i][feature]
num = num + 1.
if valid:
return [num, sum/num]
else:
return False
def apply_fill_missing_value_to_list_vertical(list):
result = []
for i in range(len(list)):
el = []
for j in range(len(list[i])): #last index indicates time
if list[i][j] == None or list[i][j] == 0.:
up_avg = get_avg_vertical(list, i, j, True)
down_avg = get_avg_vertical(list, i, j, False)
if up_avg != False and down_avg != False:
el.append((up_avg[0] * up_avg[1] + down_avg[0] * down_avg[1]) / (up_avg[0] + down_avg[0]))
elif up_avg == False and down_avg != False:
el.append(down_avg[1])
elif up_avg != False and down_avg == False:
el.append(up_avg[1])
else:
return []
else:
el.append(list[i][j])
result.append(el)
return result #(length = 60, 3) price, volume, time
def recover_minmax_scaler(value, min, max, mmrange=None):
if mmrange == None:
mmrange = (-1., 1.)
return (value - mmrange[0])*(max - min)/(mmrange[1]-mmrange[0]) + min
def minmax_normalization_vertical(list, steps = 10, mmrange = None):
if mmrange == None:
mmrange = (-1., 1.)
# diff = len(list) - steps
price = []
volume = []
result = []
for i in range(len(list)):
price.append(list[i][0])
volume.append(list[i][1])
price_maxi = float(max(price))
price_mini = float(min(price))
volume_maxi = float(max(volume))
volume_mini = float(min(volume))
if (price_mini != price_maxi and volume_mini != volume_maxi):
for i in range(len(list)-steps, len(list)):
result.append([(list[i][0]-price_mini)*(mmrange[1]-mmrange[0])/(price_maxi-price_mini) + mmrange[0], (list[i][1]-volume_mini)*(mmrange[1]-mmrange[0])/(volume_maxi-volume_mini) + mmrange[0], list[i][2]])
elif price_mini == price_maxi and volume_mini == volume_maxi:
for i in range(len(list)-steps, len(list)):
result.append([0., 0., list[i][2]])
elif price_mini == price_maxi and volume_mini != volume_maxi:
for i in range(len(list)-steps, len(list)):
result.append([0., (list[i][1]-volume_mini)*(mmrange[1]-mmrange[0])/(volume_maxi-volume_mini) + mmrange[0], list[i][2]])
elif price_mini != price_maxi and volume_mini == volume_maxi:
for i in range(len(list)-steps, len(list)):
result.append([(list[i][0]-price_mini)*(mmrange[1]-mmrange[0])/(price_maxi-price_mini) + mmrange[0], 0., list[i][2]])
# if diff<0:
# for i in range(-diff):
# # result[:0] = [[get_avg_vertical(result, len(result), 0, True), get_avg_vertical(result, len(result), 1, True), result[-1][2]+1.]]
# result.insert(0, [get_avg_vertical(result, len(result), 0, True), get_avg_vertical(result, len(result), 1, True), result[-1][2]+1.])
# elif diff>0:
# for i in range(diff):
# result.pop(0)
return (result, price_maxi, price_mini, volume_maxi, volume_mini, mmrange) #result = (n = 10, 3) price, volume, time
def get_data_for_prediction(sample, start_min = 0, steps = 10, mmrange = None):
if mmrange == None:
mmrange = (-1., 1.)
return minmax_normalization_vertical(apply_fill_missing_value_to_list_vertical(sample_to_list(sample, start_min = start_min, steps = steps)), steps, mmrange)