注意事项(NOTICE):
-
训练请使用SGD优化器(with momentum 0.9). 不要使用Adam. 会造成不收敛.
推荐lr: Pre_train(1e-4 -> 1e-3 -> 1e-2 -> 3e-2) -> Train(5e-2) -> Post_Train(3e-2 -> 1e-2 -> 1e-3)
推荐weight_decay: 4e-5 或 1e-4 (区别不大)
Use SGD optimizer for training(with momentum 0.9). Do not use Adam. It will cause a nonconvergence -
有两个分支,一个是按照论文书写(official)、一个是参考
zylo117
的代码(master), 并使用了他的预训练模型书写(万分感谢),请按实际情况选择
There are two branches, one(official) was written according to the paper, the other(master) was written referring to the code of 'Zylo117' and use his pre-training model(thank you very much), please choose according to the actual situation -
train_example.py
的意义是展示模型输入的格式
The meaning oftrain_example.py
is to show the format of the model input -
自己训练的时候,请使用
EfficientNet
预训练模型、并Freeze BackboneBN
(推荐使用official)
Use 'EfficientNet' pre-training model and 'Freeze BackboneBN' when you train yourself (Official is recommended)
-
论文(paper):
https://arxiv.org/pdf/1911.09070.pdf -
代码参考(reference code):
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch -
EfficientNet 主干网代码来源(Backbone code source):
https://github.com/Jintao-Huang/EfficientNet_PyTorch -
预训练模型来自(The pre-training model comes from):
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
因为修改了模型,所以我把预训练模型的state_dict进行了重组,并进行发布
(Because I changed the model, I reorganized the state_dict for the pretraining model and release it)
权重见 release. 或在百度云中下载:
链接:https://pan.baidu.com/s/1VrO0eBmSHlB8_haEJ7WbuA
提取码:2kq9
python3 pred_image.py
python3 pred_video.py
python3 train_example.py
python3 make_dataset.py
python3 train.py
如果打不开可在images/
与docs/
文件夹中查看
torch 1.2.0
torchvision 0.4.0