-
Notifications
You must be signed in to change notification settings - Fork 81
/
abm-predator-prey-evolvable.py
96 lines (81 loc) · 2.63 KB
/
abm-predator-prey-evolvable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pycxsimulator
from pylab import *
import copy as cp
nr = 500. # carrying capacity of rabbits
r_init = 100 # initial rabbit population
mr = 0.03 # magnitude of movement of rabbits
dr = 1.0 # death rate of rabbits when it faces foxes
rr = 0.1 # reproduction rate of rabbits
f_init = 30 # initial fox population
mf = 0.05 # magnitude of movement of foxes
df = 0.1 # death rate of foxes when there is no food
rf = 0.5 # reproduction rate of foxes
cd = 0.02 # radius for collision detection
cdsq = cd ** 2
class agent:
pass
def initialize():
global agents
agents = []
for i in range(r_init + f_init):
ag = agent()
ag.type = 'r' if i < r_init else 'f'
ag.m = mr if i < r_init else mf ###
ag.x = random()
ag.y = random()
agents.append(ag)
def observe():
global agents
cla()
rabbits = [ag for ag in agents if ag.type == 'r']
if len(rabbits) > 0:
x = [ag.x for ag in rabbits]
y = [ag.y for ag in rabbits]
plot(x, y, 'b.')
foxes = [ag for ag in agents if ag.type == 'f']
if len(foxes) > 0:
x = [ag.x for ag in foxes]
y = [ag.y for ag in foxes]
plot(x, y, 'ro')
axis('image')
axis([0, 1, 0, 1])
def update_one_agent():
global agents
if agents == []:
return
ag = choice(agents)
# simulating random movement
m = ag.m ###
ag.x += uniform(-m, m)
ag.y += uniform(-m, m)
ag.x = 1 if ag.x > 1 else 0 if ag.x < 0 else ag.x
ag.y = 1 if ag.y > 1 else 0 if ag.y < 0 else ag.y
# detecting collision and simulating death or birth
neighbors = [nb for nb in agents if nb.type != ag.type
and (ag.x - nb.x)**2 + (ag.y - nb.y)**2 < cdsq]
if ag.type == 'r':
if len(neighbors) > 0: # if there are foxes nearby
if random() < dr:
agents.remove(ag)
return
if random() < rr*(1-sum([1 for x in agents if x.type == 'r'])/nr):
newborn = cp.copy(ag) ###
newborn.m += uniform(-0.01, 0.01) ###
agents.append(newborn) ###
else:
if len(neighbors) == 0: # if there are no rabbits nearby
if random() < df:
agents.remove(ag)
return
else: # if there are rabbits nearby
if random() < rf:
newborn = cp.copy(ag) ###
newborn.m += uniform(-0.01, 0.01) ###
agents.append(newborn) ###
def update():
global agents
t = 0.
while t < 1. and len(agents) > 0:
t += 1. / len(agents)
update_one_agent()
pycxsimulator.GUI().start(func=[initialize, observe, update])