-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_sketch_ringview.py
337 lines (280 loc) · 13.6 KB
/
train_sketch_ringview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import torch
from torch.utils.data import DataLoader
from pytorch_metric_learning.losses import NTXentLoss, CrossBatchMemory, ArcFaceLoss
from torch.optim.lr_scheduler import StepLR
from ringnet.dataset import SHREC23_Rings_RenderOnly_ImageQuery
from ringnet.models import Base3DObjectRingsExtractor
from common.models import ResNetExtractor, EfficientNetExtractor, MLP
from common.test import test_loop
from common.train import train_loop, train_loop_arcface, val_loop, val_loop_arcface
from utils.plot_logs import plot_logs
import numpy as np
import os
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--view-cnn-backbone', type=str, default='efficientnet_b2',
choices=[*ResNetExtractor.arch.keys(), *EfficientNetExtractor.arch.keys()], help='Model for ringview feature extraction')
parser.add_argument('--skt-cnn-backbone', type=str, default='efficientnet_b2',
choices=[*ResNetExtractor.arch.keys(), *EfficientNetExtractor.arch.keys()], help='Model for sketch feature extraction')
parser.add_argument('--rings-path', type=str, required=True,
help='Path to parent folder of ringviews')
parser.add_argument('--used-rings', type=str,
default='0,1,2,3,4,5,6', help='Rings to be used for training')
parser.add_argument('--skt-data-path', type=str,
required=True, help='Path to 3D sketches folder')
parser.add_argument('--train-csv-path', type=str, required=True,
help='Path to CSV file of mapping object and sketch in training set')
parser.add_argument('--test-csv-path', type=str, required=True,
help='Path to CSV file of mapping object and sketch in test set')
parser.add_argument('--loss-func', type=str, default='ntxent', choices=['ntxent', 'arcface'], help='Loss function')
parser.add_argument('--batch-size', type=int, default=2, help='Batch size')
parser.add_argument('--epochs', type=int, default=10, help='Num of epochs')
parser.add_argument('--num-workers', type=int,
default=1, help='Num of workers')
parser.add_argument('--lr-obj', type=float, default=1e-4,
help='Learning rate for object\'s network')
parser.add_argument('--lr-skt', type=float, default=1e-4,
help='Learning rate for sketch\'s network')
parser.add_argument('--use-cbm', default=False, action='store_true',
help='Use cross batch memory in training')
parser.add_argument('--reduce-lr', default=False, action='store_true',
help='Use cross batch memory in training')
parser.add_argument('--latent-dim', type=int, default=128,
help='Latent dimensions of common embedding space')
parser.add_argument('--view-seq-embedder', type=str, default='bilstm',
choices=['bilstm', 'mha'], help='Embedder for all views of a ring')
parser.add_argument('--num-rings-mhas', type=int, default=1,
help='Num of MHA layers for all rings self-attention')
parser.add_argument('--num-heads', type=int, default=4,
help='Num of heads in each MHA layers')
parser.add_argument('--dropout', type=float, default=0.1,
help='Dropout rate of MHA layers')
parser.add_argument('--output-path', type=str,
default='./exps', help='Path to output folder')
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = args.batch_size
latent_dim = args.latent_dim
epoch = args.epochs
ring_ids = [int(id) for id in args.used_rings.split(',')]
# output folder
output_path = args.output_path
if not os.path.exists(output_path):
os.makedirs(output_path)
folders = os.listdir(output_path)
new_id = 0
if len(folders) > 0:
for folder in folders:
if not folder.startswith('ringview_exp_'):
continue
new_id = max(new_id, int(folder.split('ringview_exp_')[-1]))
new_id += 1
output_path = os.path.join(output_path, f'ringview_exp_{new_id}')
os.makedirs(output_path)
weights_path = os.path.join(output_path, 'weights')
os.mkdir(weights_path)
# object extraction model
view_cnn_backbone = args.view_cnn_backbone
obj_extractor = Base3DObjectRingsExtractor(
view_cnn_backbone=view_cnn_backbone,
num_rings=len(ring_ids),
view_seq_embedder=args.view_seq_embedder,
num_mhas=args.num_rings_mhas,
num_heads=args.num_heads,
dropout=args.dropout,
)
obj_embedder = MLP(obj_extractor, latent_dim=latent_dim).to(device)
# sketch extraction model
skt_cnn_backbone = args.skt_cnn_backbone
if skt_cnn_backbone.startswith('resnet'):
query_extractor = ResNetExtractor(skt_cnn_backbone)
elif skt_cnn_backbone.startswith('efficientnet'):
query_extractor = EfficientNetExtractor(skt_cnn_backbone)
else:
raise NotImplementedError
query_embedder = MLP(query_extractor, latent_dim=latent_dim).to(device)
# datasets
train_ds = SHREC23_Rings_RenderOnly_ImageQuery(
args.train_csv_path, args.rings_path, args.skt_data_path, ring_ids)
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True,
num_workers=args.num_workers, collate_fn=train_ds.collate_fn)
test_ds = SHREC23_Rings_RenderOnly_ImageQuery(
args.test_csv_path, args.rings_path, args.skt_data_path, ring_ids, is_train=False)
test_dl = DataLoader(test_ds, batch_size=batch_size, shuffle=True,
num_workers=args.num_workers, collate_fn=test_ds.collate_fn)
training_losses = []
val_losses = []
eval_results = []
best_loss = float('inf')
if args.loss_func == 'ntxent':
print('Training with NTXent loss...')
contra_loss = NTXentLoss()
cbm_query = CrossBatchMemory(contra_loss, latent_dim, 128)
cbm_object = CrossBatchMemory(contra_loss, latent_dim, 128)
# Set optimizers
optimizer1 = torch.optim.AdamW(
obj_embedder.parameters(), lr=args.lr_obj, weight_decay=0.0001)
optimizer2 = torch.optim.AdamW(
query_embedder.parameters(), lr=args.lr_skt, weight_decay=0.0001)
# Set Scheduler
if args.reduce_lr:
obj_scheduler = StepLR(optimizer1, step_size=10, gamma=0.3333)
query_scheduler = StepLR(optimizer2, step_size=10, gamma=0.3333)
prev_obj_lr, prev_query_lr = optimizer1.param_groups[
0]['lr'], optimizer2.param_groups[0]['lr']
for e in range(epoch):
print(f'Epoch {e+1}/{epoch}:')
train_loss = train_loop(obj_embedder=obj_embedder, query_embedder=query_embedder,
obj_input='object_ims', query_input='query_ims',
cbm_query=cbm_query, cbm_object=cbm_object,
obj_optimizer=optimizer1, query_optimizer=optimizer2,
dl=train_dl,
device=device,
use_cross_batch_mem=args.use_cbm)
print(f'Training Loss: {train_loss:.4f}')
training_losses.append(train_loss)
val_loss = val_loop(obj_embedder=obj_embedder, query_embedder=query_embedder,
obj_input='object_ims', query_input='query_ims',
cbm_query=cbm_query, cbm_object=cbm_object,
dl=test_dl,
device=device,
use_cross_batch_mem=args.use_cbm)
print(f'Val loss: {val_loss:.4f}')
val_losses.append(val_loss)
if val_loss < best_loss:
best_loss = val_loss
print('Saving best weights...')
# save weights
torch.save([obj_extractor.kwargs, obj_embedder.state_dict()], os.path.join(
weights_path, 'best_obj_embedder.pth'))
torch.save([query_extractor.kwargs, query_embedder.state_dict()],
os.path.join(weights_path, 'best_query_embedder.pth'))
if args.reduce_lr:
obj_scheduler.step()
query_scheduler.step()
# Print the loss and learning rate for each epoch
curr_obj_lr, curr_query_lr = optimizer1.param_groups[
0]['lr'], optimizer2.param_groups[0]['lr']
if curr_obj_lr != prev_obj_lr:
print('Object learning rate changed from {:.7f} to {:.7f}'.format(
prev_obj_lr, curr_obj_lr))
prev_obj_lr = curr_obj_lr
if curr_query_lr != prev_query_lr:
print('Query learning rate changed from {:.7f} to {:.7f}'.format(
prev_query_lr, curr_query_lr))
prev_query_lr = curr_query_lr
metrics_results = test_loop(obj_embedder=obj_embedder, query_embedder=query_embedder,
obj_input='object_ims', query_input='query_ims',
dl=test_dl,
dimension=latent_dim,
device=device,
output_path=output_path)
eval_results.append(metrics_results)
elif args.loss_func == 'arcface':
print('Training with Arcface loss...')
loss_func = ArcFaceLoss(num_classes=711, embedding_size=args.latent_dim, scale=16)
# Set optimizers
optimizer1 = torch.optim.AdamW([
{
'params': obj_embedder.parameters(),
'lr': args.lr_obj,
'weight_decay': 0.0001
},
{
'params': loss_func.parameters(),
'lr': 10 * args.lr_obj
}
])
optimizer2 = torch.optim.AdamW([
{
'params': query_embedder.parameters(),
'lr': args.lr_skt,
'weight_decay': 0.0001
},
{
'params': loss_func.parameters(),
'lr': 10 * args.lr_skt
}
])
# Set Scheduler
if args.reduce_lr:
obj_scheduler = StepLR(optimizer1, step_size=10, gamma=0.3333)
query_scheduler = StepLR(optimizer2, step_size=10, gamma=0.3333)
prev_obj_lr, prev_query_lr = optimizer1.param_groups[
0]['lr'], optimizer2.param_groups[0]['lr']
for e in range(epoch):
print(f'Epoch {e+1}/{epoch}:')
train_loss = train_loop_arcface(obj_embedder=obj_embedder, query_embedder=query_embedder,
obj_input='object_ims', query_input='query_ims',
loss_func=loss_func,
obj_optimizer=optimizer1, query_optimizer=optimizer2,
dl=train_dl,
device=device)
print(f'Training Loss: {train_loss:.4f}')
training_losses.append(train_loss)
val_loss = val_loop_arcface(obj_embedder=obj_embedder, query_embedder=query_embedder,
obj_input='object_ims', query_input='query_ims',
loss_func=loss_func,
dl=test_dl,
device=device)
print(f'Val loss: {val_loss:.4f}')
val_losses.append(val_loss)
if val_loss < best_loss:
best_loss = val_loss
print('Saving best weights...')
# save weights
torch.save([obj_extractor.kwargs, obj_embedder.state_dict()], os.path.join(
weights_path, 'best_obj_embedder.pth'))
torch.save([query_extractor.kwargs, query_embedder.state_dict()],
os.path.join(weights_path, 'best_query_embedder.pth'))
if args.reduce_lr:
obj_scheduler.step()
query_scheduler.step()
# Print the loss and learning rate for each epoch
curr_obj_lr, curr_query_lr = optimizer1.param_groups[
0]['lr'], optimizer2.param_groups[0]['lr']
if curr_obj_lr != prev_obj_lr:
print('Object learning rate changed from {:.7f} to {:.7f}'.format(
prev_obj_lr, curr_obj_lr))
prev_obj_lr = curr_obj_lr
if curr_query_lr != prev_query_lr:
print('Query learning rate changed from {:.7f} to {:.7f}'.format(
prev_query_lr, curr_query_lr))
prev_query_lr = curr_query_lr
metrics_results = test_loop(obj_embedder=obj_embedder, query_embedder=query_embedder,
obj_input='object_ims', query_input='query_ims',
dl=test_dl,
dimension=latent_dim,
device=device,
output_path=output_path)
eval_results.append(metrics_results)
else:
raise NotImplementedError
torch.save([obj_extractor.kwargs, obj_embedder.state_dict()], os.path.join(
weights_path, 'last_obj_embedder.pth'))
torch.save([query_extractor.kwargs, query_embedder.state_dict()], os.path.join(
weights_path, 'last_query_embedder.pth'))
obj_embedder.load_state_dict(torch.load(os.path.join(weights_path, 'best_obj_embedder.pth'))[1])
query_embedder.load_state_dict(torch.load(os.path.join(weights_path, 'best_query_embedder.pth'))[1])
print('Best weights result:')
metrics_results = test_loop(obj_embedder=obj_embedder, query_embedder=query_embedder,
obj_input='object_ims', query_input='query_ims',
dl=test_dl,
dimension=latent_dim,
device=device,
output_path=output_path)
with open(os.path.join(output_path, 'args.json'), 'w') as f:
json.dump(args.__dict__, f)
# plot metrics
NNs = []
P10s = []
NDCGs = []
mAPs = []
for res in eval_results:
NNs.append(res['NN'])
P10s.append(res['P@10'])
NDCGs.append(res['NDCG'])
mAPs.append(res['mAP'])
plot_logs(training_losses, val_losses, NNs, P10s, NDCGs,
mAPs, f'{output_path}/results.png')