Skip to content

Latest commit

 

History

History
108 lines (68 loc) · 3.36 KB

get_started.md

File metadata and controls

108 lines (68 loc) · 3.36 KB

Prerequisites

Please ensure you have prepared the environment and datasets.

[23/12/16 Update] Please update the timm package to 0.9.2 to run the training script.

3D Occupancy Prediction

NuScenes

Training

python train.py --py-config config/nuscenes/nuscenes_occ.py --work-dir out/nuscenes/occ_train --depth-metric

Evaluation

Download model weights HERE and put it under out/nuscenes/occ/

python eval_iou.py --py-config config/nuscenes/nuscenes_occ.py --work-dir out/nuscenes/occ --resume-from out/nuscenes/occ/model_state_dict.pth --occ3d --resolution 0.4 --sem --use-mask --scene-size 4

SemanticKITTI

Training

python train.py --py-config config/kitti/kitti_occ.py --work-dir out/kitti/occ_train --depth-metric --dataset kitti

Evaluation

Download model weights HERE and put it under out/kitti/occ/

python eval_iou_kitti.py --py-config config/kitti/kitti_occ.py --work-dir out/kitti/occ --resume-from out/kitti/occ/model_state_dict.pth 

Novel Depth Synthesis

NuScenes

Training

python train.py --py-config config/nuscenes/nuscenes_novel_depth.py --work-dir out/nuscenes/novel_depth_train --depth-metric

Evaluation

Download model weights HERE and put it under out/nuscenes/novel_depth/

python eval_novel_depth.py --py-config config/nuscenes/nuscenes_novel_depth.py --work-dir out/nuscenes/novel_depth --resume-from out/nuscenes/novel_depth/model_state_dict.pth

SemanticKITTI

Training

python train.py --py-config config/kitti/kitti_novel_depth.py --work-dir out/kitti/novel_depth_train --depth-metric --dataset kitti

Evaluation

Download model weights HERE and put it under out/kitti/novel_depth/

python eval_novel_depth_kitti.py --py-config config/kitti/kitti_novel_depth.py --work-dir out/kitti/novel_depth --resume-from out/kitti/novel_depth/model_state_dict.pth 

Depth Estimation

nuScenes

Training

python train.py --py-config config/nuscenes/nuscenes_depth.py --work-dir out/nuscenes/depth_train --depth-metric

Evaluation

Download model weights HERE and put it under out/nuscenes/depth/

python eval_depth.py --py-config config/nuscenes/nuscenes_depth.py --work-dir out/nuscenes/depth --resume-from out/nuscenes/depth/model_state_dict.pth --depth-metric --batch 90000

Note that evaluating at a resolution (450*800) of 1:2 against the raw image (900*1600) takes about 90 min, because we batchify rays for rendering due to GPU memory limit. You can change the rendering resolution by the variable NUM_RAYS in utils/config_tools.py

KITTI-2015

Training

python train.py --py-config config/kitti_raw/kitti_raw_depth.py --work-dir out/kitti_raw/depth_train --depth-metric --dataset kitti

Evaluation

Download model weights HERE and put it under out/kitti_raw/depth/

python eval_depth.py --py-config config/kitti_raw/kitti_raw_depth.py --work-dir out/kitti_raw/depth --resume-from out/kitti_raw/depth/model_state_dict.pth --depth-metric --dataset kitti_raw