-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_preprocess.py
373 lines (299 loc) · 12.3 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import numpy as np
import re
import torch
from torch.utils.data import Dataset
from sklearn.model_selection import train_test_split
#每句话最大长度
MAX_LEN=64
#数据清理
def clean(sent):
punctuation_remove = u'[、:,?!。;……()『』《》【】~!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~]+'
sent = re.sub(r'ldquo', "", sent)
sent = re.sub(r'hellip', "", sent)
sent = re.sub(r'rdquo', "", sent)
sent = re.sub(r'yen', "", sent)
sent = re.sub(r'⑦', "7", sent)
sent = re.sub(r'(, ){2,}', "", sent)
sent = re.sub(r'(! ){2,}', "", sent) # delete too many!,?,。等
sent = re.sub(r'(? ){2,}', "", sent)
sent = re.sub(r'(。 ){2,}', "", sent)
# sent=sent.split()
# sent_no_pun=[]
# for word in sent:
# if(word!=(','or'。'or'?'or'!'or':'or';'or'('or')'or'『'or'』'or'《'or'》'or'【'or'】'or'~'or'!'or'\"'or'\''or'?'or','or'.')):
# sent_no_pun.append(word)
# s=' '.join(sent_no_pun)
sent = re.sub(punctuation_remove, "", sent) # delete punctuations
#若长度大于64,则截取前64个长度
if(len(sent.split())>MAX_LEN):
s=' '.join(sent.split()[:MAX_LEN])
else:
s = ' '.join(sent.split()) # delete additional space
return s
#创建词典
word_to_inx={'pad':0}
inx_to_word={0:'pad'}
def get_label(filename):
with open(filename, 'r', encoding='utf-8') as f:
result_labels = list()
for line in f.readlines():
result_labels.append(int(line.split('\t')[0]))
return result_labels
#获取数据,并转换为id
def get_data():
train_data = open('./data/train.txt', 'r', encoding='GBK').readlines()
train_data = [clean(line).replace('\n', '') for line in train_data]
train_labels = get_label('./data/phone_train.txt')
test_data = open('data/test.txt', 'r', encoding='GBK').readlines()
test_data = [clean(line).replace('\n', '') for line in test_data]
test_labels = get_label('./data/phone_test.txt')
dev_data = open('data/valid.txt', 'r', encoding='GBK').readlines()
dev_data = [clean(line).replace('\n', '') for line in dev_data]
dev_labels = get_label('./data/phone_dev.txt')
data = train_data + test_data + dev_data
data_label = train_labels + test_labels + dev_labels
# print(data[0:5])
# print(data_label[0:5])
vocab = [word for s in data for word in s.split()]
vocab = set(vocab) # 收集所有不重复的词
#print(vocab)
word_to_inx = {word: i for i, word in enumerate(vocab)} # 对每个word编号
inx_to_word = {word_to_inx[word]: word for word in word_to_inx} # 对每个编号赋给word
data_id = []
for s in data: #把每句话中的词编号
s_id = []
for word in s.split():
s_id.append(word_to_inx[word])
s_id = s_id+[0]*(MAX_LEN-len(s_id)) # 句子长度不够64维则补0
data_id.append(s_id)
return data_id, data_label, word_to_inx, inx_to_word
# 获取两个字典 这里get_data()函数调用了两次
# def get_dic():
# _,_,word_to_inx,inx_to_word=get_data()
# return word_to_inx,inx_to_word
# 将数据转化为tensor
def tensorFromData():
data_id, data_lable, word_to_inx, inx_to_word=get_data()
data_id_train, data_id_test, data_label_train, data_label_test = train_test_split(data_id, data_lable, test_size=0.2, random_state=20190410)
data_id_train = torch.LongTensor(data_id_train) # 将数据转成张量格式
data_id_test = torch.LongTensor(data_id_test)
data_label_train = torch.LongTensor(data_label_train)
data_label_test = torch.LongTensor(data_label_test)
return data_id_train, data_id_test, data_label_train, data_label_test, word_to_inx, inx_to_word
class TextDataSet(Dataset):
def __init__(self, inputs, outputs):
self.inputs = inputs
self.outputs = outputs
def __len__(self):
return len(self.inputs)
def __getitem__(self, index):
return self.inputs[index], self.outputs[index]
# def vocab(data):
# # 对不重复的词,做索引词典
# # vocab = [word for s in data for word in s.split()]
# # # vocab = set(vocab)
# # # print(len(vocab))
# corpus = data
# vector = TfidfVectorizer()
# tfidf = vector.fit_transform(corpus)
# print(tfidf)
# return tfidf
# # vectorizer = CountVectorizer()
# # print(vectorizer.fit_transform(data).toarray())
# # print(vectorizer.get_feature_names())
#
#
# def data_to_vectors(filename, save_filename):
# with open(filename, 'r', encoding='utf-8') as f:
# result_data = list()
# result_labels = list()
# for line in f.readlines():
# result_data.append(line.replace('\n', '').split('\t')[1])
# result_labels.append(int(line.split('\t')[0]))
#
# open(save_filename, 'w').write('%s' % '\n'.join(result_data))
#
# return result_data, result_labels
#
#
# # 获取数据,并转换为id
# def get_data():
# data_train, label_train = data_to_vectors('data/phone_train.txt', 'data/train.txt')
# data_test, label_test = data_to_vectors('data/phone_test.txt', 'data/test.txt')
# data_valid, label_valid = data_to_vectors('data/phone_dev.txt', 'data/valid.txt')
#
#
# train_tfidf = vocab(data_train)
# test_tfidf = vocab(data_test)
#
# return train_tfidf, label_train, test_tfidf, label_test #, word_to_inx, inx_to_word
# # 对数据集进行字典编号
# def data_to_ID(data):
# data_id = []
# for s in data:
# s_id = []
# for word in s.split():
# s_id.append(word_to_inx[word])
# s_id = s_id + [0] * (MAX_LEN - len(s_id))
# data_id.append(s_id)
# return data_id
# def get_data():
# data_train, label_train = data_to_vectors('data/phone_train.txt', 'data/train.txt')
# data_test, label_test = data_to_vectors('data/phone_test.txt', 'data/test.txt')
#
# train_tfidf = vocab(data_train)
# test_tfidf = vocab(data_test)
#
# return train_tfidf, label_train, test_tfidf, label_test #, word_to_inx, inx_to_word
# data_id, data_lable, _, _ = get_data()
# data_id_train, data_id_test, data_label_train, data_label_test = train_test_split(data_id, data_lable,
# test_size = 0.2,
# random_state = 20190409)
# data_label_train_new = []
# for each in data_label_train:
# data_label_train_new.append(int(each))
#test_data = open('data/phone_test.txt', 'r', encoding='utf-8').readlines()
# test_data = [clean(line).replace('\n', '').split(' ')[1] for line in test_data]
# test_data_label = [clean(line).replace('\n', '').split('\t')[0] for line in test_data]
#
# # 把str标签转成int
# test_data_label_new = []
# for each in test_data_label:
# test_data_label_new.append(int(each))
#
# # 汇总训练集和测试集数据
# data = train_data + test_data
# data_label = train_data_label_new + test_data_label_new
#
# print(len(data))
# print(len(data_label))
#
# # 对汇总的数据组建词典
# word_to_inx, inx_to_word = vocab(data)
#
# # 把训练集、测试集文字转序列
# train_data_id = data_to_ID(train_data)
# test_data_id = data_to_ID(test_data)
# train_data = open('data/phone_train.txt', 'r', encoding='utf-8').readlines()
# train_data = [clean(line).replace('\n', '').split(' ') for line in train_data]
# train_data_label = [clean(line).replace('\n', '').split('\t')[0] for line in train_data]
# 把str标签转成int
# train_data_label_new = []
# for each in train_data_label:
# train_data_label_new.append(int(each))
#
# # 数据清理
# def clean(sent):
# punctuation_remove = u'[、:,?!。;……()『』《》【】~!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~]+'
# sent = re.sub(r'ldquo', "", sent)
# sent = re.sub(r'hellip', "", sent)
# sent = re.sub(r'rdquo', "", sent)
# sent = re.sub(r'yen', "", sent)
# sent = re.sub(r'⑦', "7", sent)
# sent = re.sub(r'(, ){2,}', "", sent)
# sent = re.sub(r'(! ){2,}', "", sent) # delete too many!,?,。等
# sent = re.sub(r'(? ){2,}', "", sent)
# sent = re.sub(r'(。 ){2,}', "", sent)
# sent = re.sub(punctuation_remove, "", sent) # delete punctuations
# # 若长度大于64,则截取前64个长度
# if (len(sent.split()) > MAX_LEN):
# s = ' '.join(sent.split()[:MAX_LEN])
# else:
# s = ' '.join(sent.split()) # delete additional space
#
# return s
#
#
# # 创建词典
# word_to_inx = {'pad': 0}
# inx_to_word = {0: 'pad'}
#
#
# # 获取文件内容
# def getData(file):
# f = open(file, 'r', encoding='utf-8')
# raw_data = f.readlines()
# return raw_data
#
# # 转换文件格式
# def d2csv(raw_data, name):
# texts = []
# labels = []
# i = 0
# for line in raw_data:
# label = line.split('\t')[0]
# text = line.split('\t')[1]
# texts.append(text)
#
# labels.append(label)
# i += 1
# # if i % 1000 == 0:
# # print(i)
# df = pd.DataFrame({'texts': texts, 'labels': labels})
# print(df.shape)
# df.to_csv('data/' + name + '.csv', index=False) # 保存文件
# # print(labels)
#
# #
# # def vocab(data):
# # # 对不重复的词,做索引词典
# # vocab = [word for s in data for word in s.split()]
# # vocab = set(vocab)
# # print(len(vocab))
# # # print(len(vocab))
# # # print(vocab)
# # for word in vocab:
# # inx_to_word[len(word_to_inx)] = word
# # word_to_inx[word] = len(word_to_inx)
# #
# # return word_to_inx, inx_to_word
#
#
#
# # print(len(vocab))
# # print(vocab)
# for word in vocab:
# inx_to_word[len(word_to_inx)] = word
# word_to_inx[word] = len(word_to_inx)
#
# return word_to_inx, inx_to_word
# test_data = open('data/phone_test.txt', 'r', encoding='utf-8').readlines()
# test_data = [clean(line).replace('\n', '').replace('\r', '').split('\t')[0] for line in test_data]
# test_data_label = [0 for i in range(len(test_data))]
#
# train_data = open('data/phone_train.txt', 'r', encoding='utf-8').readlines()
# train_data = [clean(line).replace('\n', '').replace('\r', '') for line in train_data]
# train_data_label = [1 for i in range(len(train_data))]
#
# dev_data = open('data/phone_dev.txt', 'r', encoding='utf-8').readlines()
# dev_data = [clean(line).replace('\n', '').replace('\r', '') for line in dev_data]
# dev_data_label = [2 for i in range(len(dev_data))]
# data = []
# data_label = []
# test_data = getData('data/phone_test.txt')
# d2csv(test_data, 'test')
# train_data = getData('data/phone_train.txt')
# d2csv(train_data, 'train')
# dev_data = getData('data/phone_dev.txt')
# d2csv(dev_data, 'dev')
# train_data = pd.read_csv('data/train.csv')
# data.append(train_data.ix[:, 0])
# data_label.append(train_data.ix[:, 1])
# test_data = pd.read_csv('data/test.csv')
# data.append(test_data.ix[:, 0])
# data_label.append(test_data.ix[:, 1])
#
# dev_data = pd.read_csv('data/dev.csv')
# data.append(dev_data.ix[:, 0])
# data_label.append(dev_data.ix[:, 1])
# print(data)
# print(data_label_new)
# data.append(train_data.ix[:, 0]) + test_data.ix[:, 0] + dev_data.ix[:, 0]
# data_label = train_data.ix[:, 1] + test_data.ix[:, 1] + dev_data.ix[:, 1]
# # 合并所有文本和标签
# data = test_data + train_data + dev_data
# print(len(data))
# print(len(data_label))
# data_label = test_data_label + dev_data_label + train_data_label
# print(data[0:5])
# print(data_label[0:5])