-
Notifications
You must be signed in to change notification settings - Fork 5
/
exp_vggA.lua
executable file
·249 lines (198 loc) · 7.05 KB
/
exp_vggA.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
require 'xlua'
require 'optim'
require 'cunn'
dofile './provider.lua'
local c = require 'trepl.colorize'
cmd = torch.CmdLine()
cmd:text()
cmd:text()
cmd:text('compare the Decorelated BatchNormalizaiton method with baselines on MLP architechture')
cmd:text()
cmd:text('Options')
cmd:option('-model','vggA_plain','the methods')
cmd:option('-dataPath','./dataset/cifar_provider.t7','the path of data dir')
cmd:option('-max_epoch',80,'maximum number of iterations')
cmd:option('-epoch_step',20000,'epoch step: no lr annealing if it is larger than the maximum')
cmd:option('-save',"../0_experiment_result/log_Conv_6Final" ,'subdirectory to save logs')
cmd:option('-batchSize',256,'the number of examples per batch')
cmd:option('-optimization','simple','the methods: options:simple,rms,adagrad,adam')
cmd:option('-learningRate',1,'initial learning rate')
---for simple (sgd)--------
cmd:option('-lrD_k',2000,'exponential learning rate decay, and each lrD_k iteration the learning rate become half')
cmd:option('-weightDecay',0.0005,'weight Decay for regularization')
cmd:option('-momentum',0.9,'momentum')
------------for rms/ agagrad-------
cmd:option('-rms_alpha',0,'the rate of the rms method')
cmd:option('-base_hidden',64,'')
cmd:option('-seed',1,'the step to debug the weights')
cmd:text()
-- parse input params
opt = cmd:parse(arg)
opt.rundir = cmd:string('console/result_', opt, {dir=true})
paths.mkdir(opt.rundir)
-- -- create log file
cmd:log(opt.rundir .. '/log', opt)
cutorch.manualSeed(opt.seed)
print(c.blue'==>' ..' configuring optimizer')
if opt.optimization == 'simple' then
opt.optimState = {
learningRate =opt.learningRate,
weightDecay = opt.weightDecay,
momentum = opt.momentum,
learningRateDecay = learningRateDecay
}
optimMethod = optim.sgd
elseif opt.optimization == 'adagrad' then
opt.optimState = {
learningRate = opt.learningRate,
}
optimMethod = optim.adagrad
elseif opt.optimization == 'rms' then
opt.optimState = {
learningRate = opt.learningRate,
alpha=opt.rms_alpha
}
optimMethod = optim.rmsprop
elseif opt.optimization == 'adam' then
opt.optimState = {
learningRate = opt.learningRate
}
optimMethod = optim.adam
else
error('Unknown optimizer')
end
print(opt)
torch.manualSeed(opt.seed) -- fix random seed so program runs the same every time
threadNumber=4
torch.setnumthreads(threadNumber)
torch.setdefaulttensortype('torch.FloatTensor')
do -- data augmentation module
local BatchFlip,parent = torch.class('nn.BatchFlip', 'nn.Module')
function BatchFlip:__init()
parent.__init(self)
self.train = true
end
function BatchFlip:updateOutput(input)
if self.train then
local bs = input:size(1)
local flip_mask = torch.randperm(bs):le(bs/2)
for i=1,input:size(1) do
if flip_mask[i] == 1 then image.hflip(input[i], input[i]) end
end
end
self.output = input
return self.output
end
end
print(c.blue '==>' ..' configuring model')
local model = nn.Sequential()
model:add(nn.BatchFlip():float())
model:add(nn.Copy('torch.FloatTensor','torch.CudaTensor'):cuda())
model:add(dofile('models/'..opt.model..'.lua'):cuda())
model:get(2).updateGradInput = function(input) return end
print(model)
print(c.blue '==>' ..' loading data')
--provider = torch.load './dataset/cifar_provider.t7'
provider = torch.load(opt.dataPath)
provider.trainData.data = provider.trainData.data:float()
provider.testData.data = provider.testData.data:float()
confusion = optim.ConfusionMatrix(10)
print('Will save at '..opt.save)
paths.mkdir(opt.save)
log_name=opt.model..'_'..opt.optimization..'_lr'..opt.learningRate
testLogger = optim.Logger(paths.concat(opt.save, log_name))
testLogger:setNames{'% mean class accuracy (train set)', '% mean class accuracy (test set)'}
testLogger.showPlot = false
parameters,gradParameters = model:getParameters()
print(c.blue'==>' ..' setting criterion')
criterion = nn.CrossEntropyCriterion():cuda()
function train()
model:training()
epoch = epoch or 1
print(c.blue '==>'.." online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ']')
local targets = torch.CudaTensor(opt.batchSize)
local indices = torch.randperm(provider.trainData.data:size(1)):long():split(opt.batchSize)
-- remove last element so that all the batches have equal size
indices[#indices] = nil
-- local tic = torch.tic()
for t,v in ipairs(indices) do
xlua.progress(t, #indices)
local inputs = provider.trainData.data:index(1,v)
targets:copy(provider.trainData.labels:index(1,v))
local feval = function(x)
if x ~= parameters then parameters:copy(x) end
gradParameters:zero()
local outputs = model:forward(inputs)
local f = criterion:forward(outputs, targets)
local df_do = criterion:backward(outputs, targets)
model:backward(inputs, df_do)
confusion:batchAdd(outputs, targets)
print(string.format("Iter: %6s, loss = %6.6f", iteration,f))
losses[#losses + 1] = f
timeCosts[#timeCosts+1]=torch.toc(start_time)
print(string.format("time Costs = %6.6f", timeCosts[#timeCosts]))
iteration=iteration+1
return f,gradParameters
end
-----learning rate schedule---------------
local k=torch.log(2)/opt.lrD_k
local lr_scale=torch.exp(-k*iteration)
opt.optimState.learningRate=opt.learningRate* lr_scale
print('learning Rate:'..opt.optimState.learningRate)
optimMethod (feval, parameters, opt.optimState)
end
confusion:updateValids()
print(('Train accuracy: '..c.cyan'%.2f'..' %%\t time: %.2f s'):format(
confusion.totalValid * 100, torch.toc(start_time)))
train_acc = confusion.totalValid * 100
train_accus[#train_accus+1]=train_acc
confusion:zero()
epoch = epoch + 1
end
function test()
model:evaluate()
print(c.blue '==>'.." testing")
local bs = 125
for i=1,provider.testData.data:size(1),bs do
local outputs = model:forward(provider.testData.data:narrow(1,i,bs))
confusion:batchAdd(outputs, provider.testData.labels:narrow(1,i,bs))
end
confusion:updateValids()
print('Test accuracy:', confusion.totalValid * 100)
test_accus[#test_accus+1]=confusion.totalValid * 100
if testLogger then
paths.mkdir(opt.save)
testLogger:add{train_acc, confusion.totalValid * 100}
testLogger:style{'-','-'}
testLogger:plot()
end
confusion:zero()
end
iteration=0
losses={}
timeCosts={}
train_accus={}
test_accus={}
start_time=torch.tic()
train_times={}
test_times={}
for i=1,opt.max_epoch do
local function t(f) local s = torch.Timer();f() return s:time().real end
local train_time = t(train)
train_times[#train_times+1]=train_time
print('train Time:'..train_time)
local test_time = t(test)
test_times[#test_times+1]=test_time
print('test Time:'..test_time)
end
results={}
results.opt=opt
results.losses=losses
results.train_accus=train_accus
results.test_accus=test_accus
results.train_times=train_times
results.test_times=test_times
results.confusion=confusion
results.opt.optimState.dfdx=nil
torch.save('result_'..opt.model..'_'..opt.optimization..'_lr'..opt.learningRate..'_mm'..opt.momentum..'_'..opt.weightDecay
..'.dat',results)