Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Some other enhancement for stable diffusion #159

Merged
merged 3 commits into from
Aug 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 7 additions & 3 deletions optimum/exporters/neuron/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,13 +108,17 @@ def normalize_input_shapes(task: str, args: argparse.Namespace) -> Dict[str, int


def normalize_stable_diffusion_input_shapes(
task: str,
args: argparse.Namespace,
) -> Dict[str, Dict[str, int]]:
args = vars(args) if isinstance(args, argparse.Namespace) else args
mandatory_axes = set(getattr(inspect.getfullargspec(build_stable_diffusion_components_mandatory_shapes), "args"))
# Remove `sequence_length` as diffusers will pad it to the max and remove number of channels .
mandatory_axes = mandatory_axes - {"sequence_length", "unet_num_channels", "vae_num_channels"}
mandatory_axes = mandatory_axes - {
"sequence_length",
"unet_num_channels",
"vae_encoder_num_channels",
"vae_decoder_num_channels",
}
if not mandatory_axes.issubset(set(args.keys())):
raise AttributeError(
f"Shape of {mandatory_axes} are mandatory for neuron compilation, while {mandatory_axes.difference(args.keys())} are not given."
Expand Down Expand Up @@ -274,7 +278,7 @@ def main():
compiler_kwargs = infer_compiler_kwargs(args)

if task == "stable-diffusion":
input_shapes = normalize_stable_diffusion_input_shapes(task, args)
input_shapes = normalize_stable_diffusion_input_shapes(args)
else:
input_shapes = normalize_input_shapes(task, args)

Expand Down
20 changes: 11 additions & 9 deletions optimum/exporters/neuron/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@

import numpy as np
import torch
from packaging import version
from transformers import PretrainedConfig

from ...exporters.error_utils import OutputMatchError, ShapeError
Expand Down Expand Up @@ -434,7 +435,7 @@ def export_neuronx(
neuron_model = neuronx.dynamic_batch(neuron_model)

# diffusers specific
async_stable_diffusion_loading(config, neuron_model)
improve_stable_diffusion_loading(config, neuron_model)

torch.jit.save(neuron_model, output)
del neuron_model
Expand All @@ -453,14 +454,15 @@ def add_stable_diffusion_compiler_args(config, compiler_args):
return compiler_args


def async_stable_diffusion_loading(config, neuron_model):
if hasattr(config._config, "_name_or_path"):
sd_components = ["text_encoder", "unet", "vae", "vae_encoder", "vae_decoder"]
if any(component in config._config._name_or_path.lower() for component in sd_components):
neuronx.async_load(neuron_model)
# unet
if "unet" in config._config._name_or_path.lower():
neuronx.lazy_load(neuron_model)
def improve_stable_diffusion_loading(config, neuron_model):
if version.parse(neuronx.__version__) >= version.parse("1.13.1.1.9.0"):
if hasattr(config._config, "_name_or_path"):
sd_components = ["text_encoder", "unet", "vae", "vae_encoder", "vae_decoder"]
if any(component in config._config._name_or_path.lower() for component in sd_components):
neuronx.async_load(neuron_model)
# unet
if "unet" in config._config._name_or_path.lower():
neuronx.lazy_load(neuron_model)


def export_neuron(
Expand Down
13 changes: 10 additions & 3 deletions optimum/exporters/neuron/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,14 +85,21 @@ def build_stable_diffusion_components_mandatory_shapes(
batch_size: Optional[int] = None,
sequence_length: Optional[int] = None,
unet_num_channels: Optional[int] = None,
vae_num_channels: Optional[int] = None,
vae_encoder_num_channels: Optional[int] = None,
vae_decoder_num_channels: Optional[int] = None,
height: Optional[int] = None,
width: Optional[int] = None,
):
text_encoder_input_shapes = {"batch_size": batch_size, "sequence_length": sequence_length}
vae_encoder_input_shapes = vae_decoder_input_shapes = {
vae_encoder_input_shapes = {
"batch_size": batch_size,
"num_channels": vae_num_channels,
"num_channels": vae_encoder_num_channels,
"height": height,
"width": width,
}
vae_decoder_input_shapes = {
"batch_size": batch_size,
"num_channels": vae_decoder_num_channels,
"height": height,
"width": width,
}
Expand Down
5 changes: 5 additions & 0 deletions optimum/neuron/modeling_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ def __init__(
tokenizer: CLIPTokenizer,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
feature_extractor: Optional[CLIPFeatureExtractor] = None,
device_ids: Optional[List[int]] = [],
configs: Optional[Dict[str, "PretrainedConfig"]] = None,
neuron_configs: Optional[Dict[str, "NeuronConfig"]] = None,
model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None,
Expand All @@ -103,6 +104,8 @@ def __init__(
A scheduler to be used in combination with the U-NET component to denoise the encoded image latents.
feature_extractor (`Optional[CLIPFeatureExtractor]`, defaults to `None`):
A model extracting features from generated images to be used as inputs for the `safety_checker`
device_ids (Optional[List[int]], defaults to `[]`):
A list of integers that specify the NeuronCores to use for parallelization
configs (Optional[Dict[str, "PretrainedConfig"]], defaults to `None`):
A dictionary configurations for components of the pipeline.
neuron_configs (Optional["NeuronConfig"], defaults to `None`):
Expand All @@ -114,6 +117,7 @@ def __init__(
"""

self._internal_dict = config
self.device_ids = device_ids
self.configs = configs
self.neuron_configs = neuron_configs
self.dynamic_batch_size = all(
Expand Down Expand Up @@ -332,6 +336,7 @@ def _from_pretrained(
tokenizer=sub_models["tokenizer"],
scheduler=sub_models["scheduler"],
feature_extractor=sub_models.pop("feature_extractor", None),
device_ids=device_ids,
configs=configs,
neuron_configs=neuron_configs,
model_save_dir=model_save_dir,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,7 @@ def __call__(
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0 and self.dynamic_batch_size
do_classifier_free_guidance = guidance_scale > 1.0 and (self.dynamic_batch_size or len(self.device_ids) == 2)

# 3. Encode input prompt
text_encoder_lora_scale = (
Expand Down