-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.bib
211 lines (191 loc) · 5.85 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
@book{kassel2008braid,
title={Braid Groups},
author={Kassel, C. and Dodane, O. and Turaev, V.},
isbn={9780387685489},
lccn={2008922934},
series={Graduate Texts in Mathematics},
url={https://books.google.co.in/books?id=y6Cox3XjdroC},
year={2008},
publisher={Springer New York}
}
@book{lickorish1997,
title={An Introduction to Knot Theory},
author={Lickorish, WB Raymond},
isbn={978-0-387-98254-0},
series={Graduate Texts in Mathematics},
year={1997},
edition={1},
publisher={Springer New York, NY}
doi = {https://doi.org/10.1007/978-1-4612-0691-0}
}
@article{10.1215/S0012-7094-00-10131-7,
author = {Mikhail Khovanov},
title = {{A categorification of the Jones polynomial}},
volume = {101},
journal = {Duke Mathematical Journal},
number = {3},
publisher = {Duke University Press},
pages = {359 -- 426},
abstract = {},
year = {2000},
doi = {10.1215/S0012-7094-00-10131-7},
URL = {https://doi.org/10.1215/S0012-7094-00-10131-7}
}
@article{OlegViro2004,
abstract = {Mikhail Khovanov defined, for a diagram of an oriented classical link, a collection of groups labelled by pairs of integers. These groups were constructed as the homology groups of certain chain complexes. The Euler characteristics of these complexes are the coefficients of the Jones polynomial of the link. The original construction is overloaded with algebraic details. Most of the specialists use adaptations of it stripped off the details. The goal of this paper is to overview these adaptations and show how to switch between them. We also discuss a version of Khovanov homology for framed links and suggest a new grading for it.},
author = {Oleg Viro},
journal = {Fundamenta Mathematicae},
keywords = {Khovanov homology; links; Reidemeister moves},
language = {eng},
number = {1},
pages = {317-342},
title = {Khovanov homology, its definitions and ramifications},
url = {http://eudml.org/doc/282696},
volume = {184},
year = {2004},
}
@article{10.2140/agt.2002.2.337,
author = {Dror Bar-Natan},
title = {On Khovanov's categorification of the Jones polynomial},
volume = {2},
journal = {Algebraic \& Geometric Topology},
number = {1},
publisher = {MSP},
pages = {337 -- 370},
keywords = {categorification, Jones polynomial, Kauffman bracket, Khovanov, knot invariants},
year = {2002},
doi = {10.2140/agt.2002.2.337},
URL = {https://doi.org/10.2140/agt.2002.2.337}
}
@incollection{birman2005braids,
title={Braids: a survey},
author={Birman, Joan S and Brendle, Tara E},
booktitle={Handbook of knot theory},
pages={19--103},
year={2005},
publisher={Elsevier}
}
@article{fassler2005braids,
title={Braids, the Artin Group, and the Jones Polynomial},
author={Fassler, Jordan},
journal={University of California. URl: http://www. math. ucla. edu/\~{} radko/191.1. 05w/jordan. pdf},
year={2005},
publisher={Citeseer}
}
@inproceedings{kauffman2016introduction,
title={An introduction to Khovanov homology},
author={Kauffman, Louis H},
booktitle={Knot theory and its applications},
pages={105--139},
year={2016}
}
@article{bar2005khovanov,
title={Khovanov’s homology for tangles and cobordisms},
author={Bar-Natan, Dror},
journal={Geometry \& Topology},
volume={9},
number={3},
pages={1443--1499},
year={2005},
publisher={Mathematical Sciences Publishers}
}
@article{viro2002remarks,
title={Remarks on definition of Khovanov homology},
author={Viro, Oleg},
journal={arXiv preprint math/0202199},
year={2002}
}
@book{adams1994knot,
title={The knot book},
author={Adams, Colin C},
year={1994},
publisher={American Mathematical Soc.}
}
@article{roberts1999knots,
title={Knots Knotes},
author={Roberts, Justin},
journal={Lectures from Edinburgh Course Maths},
volume={415},
year={1999}
}
@article{menasco1991tait,
title={The Tait flyping conjecture},
author={Menasco, William W and Thistlethwaite, Morwen B},
year={1991}
}
@article{stoimenow2008tait,
title={Tait’s conjectures and odd crossing number amphicheiral knots},
author={Stoimenow, Alexander},
journal={Bulletin of the American Mathematical Society},
volume={45},
number={2},
pages={285--291},
year={2008}
}
@article{kauffman2023jones,
title={The Jones polynomial, Knots, diagrams, and categories},
author={Kauffman, Louis H},
journal={Bulletin of the American Mathematical Society},
volume={60},
number={4},
pages={507--537},
year={2023}
}
@article{kronheimer2011khovanov,
title={Khovanov homology is an unknot-detector},
author={Kronheimer, Peter B and Mrowka, Tomasz S},
journal={Publications math{\'e}matiques de l'IH{\'E}S},
volume={113},
pages={97--208},
year={2011}
}
@article{traczyk1998new,
title={A new proof of Markov's braid theorem},
author={Traczyk, Pawe{\l}},
journal={Banach Center Publications},
volume={42},
number={1},
pages={409--419},
year={1998},
publisher={Polska Akademia Nauk. Instytut Matematyczny PAN}
}
@article{bigelow1999burau,
title={The Burau representation is not faithful for $n=5$},
author={Bigelow, Stephen},
journal={Geometry \& Topology},
volume={3},
number={1},
pages={397--404},
year={1999},
publisher={Mathematical Sciences Publishers}
}
@article{long1993burau,
title={The Burau representation is not faithful for $n\geq 6$},
author={Long, Darren D and Paton, Michael},
journal={Topology},
volume={32},
number={2},
pages={439--447},
year={1993},
publisher={Pergamon}
}
@article{turner2017five,
title={Five lectures on Khovanov homology},
author={Turner, Paul},
journal={Journal of Knot Theory and Its Ramifications},
volume={26},
number={03},
pages={1741009},
year={2017},
publisher={World Scientific}
}
@article{jacobsson2004invariant,
title={An invariant of link cobordisms from Khovanov homology},
author={Jacobsson, Magnus},
journal={Algebraic \& Geometric Topology},
volume={4},
number={2},
pages={1211--1251},
year={2004},
publisher={Mathematical Sciences Publishers}
}