We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
创建ndarray对象:
import numpy as np np.array([1,2,3,4]) np.array([[1,2,3,4],[5,6,7,8]])
转换为list
np.array([1,2,3,4]).tolist()
获取ndarray对象的基本信息:维数(ndim)、行列信息(shape)、数据存储类型(dtype)
arr = np.array([[1,2,3,4],[5,6,7,8]]) print(arr.ndim) print(arr.shape) print(arr.dtype)
设置数据存储类型
np.array([1,2,3,4], dtype=np.int32) np.arrat([1.2,1.3,1.4], dtype=np.float64)
创建特殊ndarray对象:全0(zeros)、全1(ones)、随机值(empty),参数是形状
np.zeros(8) np.ones((2,3)) np.empty((3,4))
指定范围创建ndarray对象(arange)
arr1 = np.arange(1,8,2) # [1 3 5 7]
创建网格数据(linspace)
np.linspace(0, 80, 5) # [0 20 40 60 80]
修改形状(reshape)
np.arange(0,12).reshape((3,4)) # [[ 0, 1, 2, 3], # [ 4, 5, 6, 7], # [ 8, 9, 10, 11]]
展平,转化为一维数组(flatten)
a = np.arange(12).shape(3,4) a.flatten()
矩阵转置(transpose)
a = np.arange(12).reshape(3,4) a.transpose() # 等同于 a.T
数学运算(+ - * / )、点乘(矩阵乘法)、三角函数
a = np.arange(12).reshape(3,4) b = np.arange(12).reshape(4,3) a + 1 a + b a - 1 a - b a * 2 a * b a / 2 a / b # 平方 arr ** 2 # 点乘 np.dot(a, b) a.dot(b) np.sin(a)
深浅复制,赋值操作为浅复制,使用clone方法深复制:
a = np.arange(12) b = a c = a.clone()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
创建ndarray对象:
转换为list
获取ndarray对象的基本信息:维数(ndim)、行列信息(shape)、数据存储类型(dtype)
设置数据存储类型
创建特殊ndarray对象:全0(zeros)、全1(ones)、随机值(empty),参数是形状
指定范围创建ndarray对象(arange)
创建网格数据(linspace)
修改形状(reshape)
展平,转化为一维数组(flatten)
矩阵转置(transpose)
数学运算(+ - * / )、点乘(矩阵乘法)、三角函数
深浅复制,赋值操作为浅复制,使用clone方法深复制:
The text was updated successfully, but these errors were encountered: