-
Notifications
You must be signed in to change notification settings - Fork 187
/
render.py
115 lines (103 loc) · 4.73 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import imageio
import numpy as np
import torch
from scene import Scene
import os
import cv2
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args, ModelHiddenParams
from gaussian_renderer import GaussianModel
from time import time
import threading
import concurrent.futures
def multithread_write(image_list, path):
executor = concurrent.futures.ThreadPoolExecutor(max_workers=None)
def write_image(image, count, path):
try:
torchvision.utils.save_image(image, os.path.join(path, '{0:05d}'.format(count) + ".png"))
return count, True
except:
return count, False
tasks = []
for index, image in enumerate(image_list):
tasks.append(executor.submit(write_image, image, index, path))
executor.shutdown()
for index, status in enumerate(tasks):
if status == False:
write_image(image_list[index], index, path)
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
def render_set(model_path, name, iteration, views, gaussians, pipeline, background, cam_type):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
render_images = []
gt_list = []
render_list = []
print("point nums:",gaussians._xyz.shape[0])
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
if idx == 0:time1 = time()
rendering = render(view, gaussians, pipeline, background,cam_type=cam_type)["render"]
render_images.append(to8b(rendering).transpose(1,2,0))
render_list.append(rendering)
if name in ["train", "test"]:
if cam_type != "PanopticSports":
gt = view.original_image[0:3, :, :]
else:
gt = view['image'].cuda()
gt_list.append(gt)
time2=time()
print("FPS:",(len(views)-1)/(time2-time1))
multithread_write(gt_list, gts_path)
multithread_write(render_list, render_path)
imageio.mimwrite(os.path.join(model_path, name, "ours_{}".format(iteration), 'video_rgb.mp4'), render_images, fps=30)
def render_sets(dataset : ModelParams, hyperparam, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, skip_video: bool):
with torch.no_grad():