-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests.txt
262 lines (259 loc) · 18.3 KB
/
tests.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the BIRTHDAY SPACINGS TEST ::
:: Choose m birthdays in a year of n days. List the spacings ::
:: between the birthdays. If j is the number of values that ::
:: occur more than once in that list, then j is asymptotically ::
:: Poisson distributed with mean m^3/(4n). Experience shows n ::
:: must be quite large, say n>=2^18, for comparing the results ::
:: to the Poisson distribution with that mean. This test uses ::
:: n=2^24 and m=2^9, so that the underlying distribution for j ::
:: is taken to be Poisson with lambda=2^27/(2^26)=2. A sample ::
:: of 500 j's is taken, and a chi-square goodness of fit test ::
:: provides a p value. The first test uses bits 1-24 (counting ::
:: from the left) from integers in the specified file. ::
:: Then the file is closed and reopened. Next, bits 2-25 are ::
:: used to provide birthdays, then 3-26 and so on to bits 9-32. ::
:: Each set of bits provides a p-value, and the nine p-values ::
:: provide a sample for a KSTEST. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: THE OVERLAPPING 5-PERMUTATION TEST ::
:: This is the OPERM5 test. It looks at a sequence of one mill- ::
:: ion 32-bit random integers. Each set of five consecutive ::
:: integers can be in one of 120 states, for the 5! possible or- ::
:: derings of five numbers. Thus the 5th, 6th, 7th,...numbers ::
:: each provide a state. As many thousands of state transitions ::
:: are observed, cumulative counts are made of the number of ::
:: occurences of each state. Then the quadratic form in the ::
:: weak inverse of the 120x120 covariance matrix yields a test ::
:: equivalent to the likelihood ratio test that the 120 cell ::
:: counts came from the specified (asymptotically) normal dis- ::
:: tribution with the specified 120x120 covariance matrix (with ::
:: rank 99). This version uses 1,000,000 integers, twice. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the BINARY RANK TEST for 31x31 matrices. The leftmost ::
:: 31 bits of 31 random integers from the test sequence are used ::
:: to form a 31x31 binary matrix over the field {0,1}. The rank ::
:: is determined. That rank can be from 0 to 31, but ranks< 28 ::
:: are rare, and their counts are pooled with those for rank 28. ::
:: Ranks are found for 40,000 such random matrices and a chisqua-::
:: re test is performed on counts for ranks 31,30,29 and <=28. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the BINARY RANK TEST for 32x32 matrices. A random 32x ::
:: 32 binary matrix is formed, each row a 32-bit random integer. ::
:: The rank is determined. That rank can be from 0 to 32, ranks ::
:: less than 29 are rare, and their counts are pooled with those ::
:: for rank 29. Ranks are found for 40,000 such random matrices ::
:: and a chisquare test is performed on counts for ranks 32,31, ::
:: 30 and <=29. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the BINARY RANK TEST for 6x8 matrices. From each of ::
:: six random 32-bit integers from the generator under test, a ::
:: specified byte is chosen, and the resulting six bytes form a ::
:: 6x8 binary matrix whose rank is determined. That rank can be ::
:: from 0 to 6, but ranks 0,1,2,3 are rare; their counts are ::
:: pooled with those for rank 4. Ranks are found for 100,000 ::
:: random matrices, and a chi-square test is performed on ::
:: counts for ranks 6,5 and <=4. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: THE BITSTREAM TEST ::
:: The file under test is viewed as a stream of bits. Call them ::
:: b1,b2,... . Consider an alphabet with two "letters", 0 and 1 ::
:: and think of the stream of bits as a succession of 20-letter ::
:: "words", overlapping. Thus the first word is b1b2...b20, the ::
:: second is b2b3...b21, and so on. The bitstream test counts ::
:: the number of missing 20-letter (20-bit) words in a string of ::
:: 2^21 overlapping 20-letter words. There are 2^20 possible 20 ::
:: letter words. For a truly random string of 2^21+19 bits, the ::
:: number of missing words j should be (very close to) normally ::
:: distributed with mean 141,909 and sigma 428. Thus ::
:: (j-141909)/428 should be a standard normal variate (z score) ::
:: that leads to a uniform [0,1) p value. The test is repeated ::
:: twenty times. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: The tests OPSO, OQSO and DNA ::
:: OPSO means Overlapping-Pairs-Sparse-Occupancy ::
:: The OPSO test considers 2-letter words from an alphabet of ::
:: 1024 letters. Each letter is determined by a specified ten ::
:: bits from a 32-bit integer in the sequence to be tested. OPSO ::
:: generates 2^21 (overlapping) 2-letter words (from 2^21+1 ::
:: "keystrokes") and counts the number of missing words---that ::
:: is 2-letter words which do not appear in the entire sequence. ::
:: That count should be very close to normally distributed with ::
:: mean 141,909, sigma 290. Thus (missingwrds-141909)/290 should ::
:: be a standard normal variable. The OPSO test takes 32 bits at ::
:: a time from the test file and uses a designated set of ten ::
:: consecutive bits. It then restarts the file for the next de- ::
:: signated 10 bits, and so on. ::
:: ::
:: OQSO means Overlapping-Quadruples-Sparse-Occupancy ::
:: The test OQSO is similar, except that it considers 4-letter ::
:: words from an alphabet of 32 letters, each letter determined ::
:: by a designated string of 5 consecutive bits from the test ::
:: file, elements of which are assumed 32-bit random integers. ::
:: The mean number of missing words in a sequence of 2^21 four- ::
:: letter words, (2^21+3 "keystrokes"), is again 141909, with ::
:: sigma = 295. The mean is based on theory; sigma comes from ::
:: extensive simulation. ::
:: ::
:: The DNA test considers an alphabet of 4 letters:: C,G,A,T,::
:: determined by two designated bits in the sequence of random ::
:: integers being tested. It considers 10-letter words, so that ::
:: as in OPSO and OQSO, there are 2^20 possible words, and the ::
:: mean number of missing words from a string of 2^21 (over- ::
:: lapping) 10-letter words (2^21+9 "keystrokes") is 141909. ::
:: The standard deviation sigma=339 was determined as for OQSO ::
:: by simulation. (Sigma for OPSO, 290, is the true value (to ::
:: three places), not determined by simulation. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the COUNT-THE-1's TEST on a stream of bytes. ::
:: Consider the file under test as a stream of bytes (four per ::
:: 32 bit integer). Each byte can contain from 0 to 8 1's, ::
:: with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let ::
:: the stream of bytes provide a string of overlapping 5-letter ::
:: words, each "letter" taking values A,B,C,D,E. The letters are ::
:: determined by the number of 1's in a byte:: 0,1,or 2 yield A,::
:: 3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E. Thus ::
:: we have a monkey at a typewriter hitting five keys with vari- ::
:: ous probabilities (37,56,70,56,37 over 256). There are 5^5 ::
:: possible 5-letter words, and from a string of 256,000 (over- ::
:: lapping) 5-letter words, counts are made on the frequencies ::
:: for each word. The quadratic form in the weak inverse of ::
:: the covariance matrix of the cell counts provides a chisquare ::
:: test:: Q5-Q4, the difference of the naive Pearson sums of ::
:: (OBS-EXP)^2/EXP on counts for 5- and 4-letter cell counts. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the COUNT-THE-1's TEST for specific bytes. ::
:: Consider the file under test as a stream of 32-bit integers. ::
:: From each integer, a specific byte is chosen , say the left- ::
:: most:: bits 1 to 8. Each byte can contain from 0 to 8 1's, ::
:: with probabilitie 1,8,28,56,70,56,28,8,1 over 256. Now let ::
:: the specified bytes from successive integers provide a string ::
:: of (overlapping) 5-letter words, each "letter" taking values ::
:: A,B,C,D,E. The letters are determined by the number of 1's, ::
:: in that byte:: 0,1,or 2 ---> A, 3 ---> B, 4 ---> C, 5 ---> D,::
:: and 6,7 or 8 ---> E. Thus we have a monkey at a typewriter ::
:: hitting five keys with with various probabilities:: 37,56,70,::
:: 56,37 over 256. There are 5^5 possible 5-letter words, and ::
:: from a string of 256,000 (overlapping) 5-letter words, counts ::
:: are made on the frequencies for each word. The quadratic form ::
:: in the weak inverse of the covariance matrix of the cell ::
:: counts provides a chisquare test:: Q5-Q4, the difference of ::
:: the naive Pearson sums of (OBS-EXP)^2/EXP on counts for 5- ::
:: and 4-letter cell counts. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: THIS IS A PARKING LOT TEST ::
:: In a square of side 100, randomly "park" a car---a circle of ::
:: radius 1. Then try to park a 2nd, a 3rd, and so on, each ::
:: time parking "by ear". That is, if an attempt to park a car ::
:: causes a crash with one already parked, try again at a new ::
:: random location. (To avoid path problems, consider parking ::
:: helicopters rather than cars.) Each attempt leads to either ::
:: a crash or a success, the latter followed by an increment to ::
:: the list of cars already parked. If we plot n: the number of ::
:: attempts, versus k:: the number successfully parked, we get a::
:: curve that should be similar to those provided by a perfect ::
:: random number generator. Theory for the behavior of such a ::
:: random curve seems beyond reach, and as graphics displays are ::
:: not available for this battery of tests, a simple characteriz ::
:: ation of the random experiment is used: k, the number of cars ::
:: successfully parked after n=12,000 attempts. Simulation shows ::
:: that k should average 3523 with sigma 21.9 and is very close ::
:: to normally distributed. Thus (k-3523)/21.9 should be a st- ::
:: andard normal variable, which, converted to a uniform varia- ::
:: ble, provides input to a KSTEST based on a sample of 10. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: THE MINIMUM DISTANCE TEST ::
:: It does this 100 times:: choose n=8000 random points in a ::
:: square of side 10000. Find d, the minimum distance between ::
:: the (n^2-n)/2 pairs of points. If the points are truly inde- ::
:: pendent uniform, then d^2, the square of the minimum distance ::
:: should be (very close to) exponentially distributed with mean ::
:: .995 . Thus 1-exp(-d^2/.995) should be uniform on [0,1) and ::
:: a KSTEST on the resulting 100 values serves as a test of uni- ::
:: formity for random points in the square. Test numbers=0 mod 5 ::
:: are printed but the KSTEST is based on the full set of 100 ::
:: random choices of 8000 points in the 10000x10000 square. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: THE 3DSPHERES TEST ::
:: Choose 4000 random points in a cube of edge 1000. At each ::
:: point, center a sphere large enough to reach the next closest ::
:: point. Then the volume of the smallest such sphere is (very ::
:: close to) exponentially distributed with mean 120pi/3. Thus ::
:: the radius cubed is exponential with mean 30. (The mean is ::
:: obtained by extensive simulation). The 3DSPHERES test gener- ::
:: ates 4000 such spheres 20 times. Each min radius cubed leads ::
:: to a uniform variable by means of 1-exp(-r^3/30.), then a ::
:: KSTEST is done on the 20 p-values. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the SQEEZE test ::
:: Random integers are floated to get uniforms on [0,1). Start- ::
:: ing with k=2^31=2147483647, the test finds j, the number of ::
:: iterations necessary to reduce k to 1, using the reduction ::
:: k=ceiling(k*U), with U provided by floating integers from ::
:: the file being tested. Such j's are found 100,000 times, ::
:: then counts for the number of times j was <=6,7,...,47,>=48 ::
:: are used to provide a chi-square test for cell frequencies. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: The OVERLAPPING SUMS test ::
:: Integers are floated to get a sequence U(1),U(2),... of uni- ::
:: form [0,1) variables. Then overlapping sums, ::
:: S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are formed. ::
:: The S's are virtually normal with a certain covariance mat- ::
:: rix. A linear transformation of the S's converts them to a ::
:: sequence of independent standard normals, which are converted ::
:: to uniform variables for a KSTEST. The p-values from ten ::
:: KSTESTs are given still another KSTEST. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the RUNS test. It counts runs up, and runs down, ::
:: in a sequence of uniform [0,1) variables, obtained by float- ::
:: ing the 32-bit integers in the specified file. This example ::
:: shows how runs are counted: .123,.357,.789,.425,.224,.416,.95::
:: contains an up-run of length 3, a down-run of length 2 and an ::
:: up-run of (at least) 2, depending on the next values. The ::
:: covariance matrices for the runs-up and runs-down are well ::
:: known, leading to chisquare tests for quadratic forms in the ::
:: weak inverses of the covariance matrices. Runs are counted ::
:: for sequences of length 10,000. This is done ten times. Then ::
:: repeated. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: This is the CRAPS TEST. It plays 200,000 games of craps, finds::
:: the number of wins and the number of throws necessary to end ::
:: each game. The number of wins should be (very close to) a ::
:: normal with mean 200000p and variance 200000p(1-p), with ::
:: p=244/495. Throws necessary to complete the game can vary ::
:: from 1 to infinity, but counts for all>21 are lumped with 21. ::
:: A chi-square test is made on the no.-of-throws cell counts. ::
:: Each 32-bit integer from the test file provides the value for ::
:: the throw of a die, by floating to [0,1), multiplying by 6 ::
:: and taking 1 plus the integer part of the result. ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
NOTE: Most of the tests in DIEHARD return a p-value, which
should be uniform on [0,1) if the input file contains truly
independent random bits. Those p-values are obtained by
p=F(X), where F is the assumed distribution of the sample
random variable X---often normal. But that assumed F is just
an asymptotic approximation, for which the fit will be worst
in the tails. Thus you should not be surprised with
occasional p-values near 0 or 1, such as .0012 or .9983.
When a bit stream really FAILS BIG, you will get p's of 0 or
1 to six or more places. By all means, do not, as a
Statistician might, think that a p < .025 or p> .975 means
that the RNG has "failed the test at the .05 level". Such
p's happen among the hundreds that DIEHARD produces, even
with good RNG's. So keep in mind that " p happens".