forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink_predict.py
272 lines (223 loc) · 9.4 KB
/
link_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import traceback
import re
import io
import yaml
import numpy as np
from easydict import EasyDict as edict
from pgl.utils import paddle_helper
from pgl.graph_wrapper import BatchGraphWrapper
import propeller.paddle as propeller
from propeller.paddle.data import Dataset
import paddle.fluid as F
import paddle.fluid.layers as L
import logging
from propeller import log
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.tokenizing_ernie import ErnieTinyTokenizer
log.setLevel(logging.DEBUG)
from dataset.graph_reader import BatchGraphGenerator
from models.encoder import Encoder
from models.pretrain_model_loader import PretrainedModelLoader
from models.loss import Loss
from optimization import optimization
class ERNIESageLinkPredictModel(propeller.train.Model):
def __init__(self, hparam, mode, run_config):
self.hparam = hparam
self.mode = mode
self.run_config = run_config
def forward(self, features):
num_nodes, num_edges, edges, node_feat_index, node_feat_term_ids, user_index, \
pos_item_index, neg_item_index, user_real_index, pos_item_real_index = features
node_feat = {"index": node_feat_index, "term_ids": node_feat_term_ids}
graph_wrapper = BatchGraphWrapper(num_nodes, num_edges, edges,
node_feat)
encoder = Encoder.factory(self.hparam)
outputs = encoder([graph_wrapper],
[user_index, pos_item_index, neg_item_index])
user_feat, pos_item_feat, neg_item_feat = outputs
# loss
if self.hparam.neg_type == "batch_neg":
neg_item_feat = pos_item_feat
if self.mode is propeller.RunMode.TRAIN:
return user_feat, pos_item_feat, neg_item_feat
elif self.mode is propeller.RunMode.PREDICT:
return user_feat, user_real_index
elif self.mode is propeller.RunMode.EVAL:
return user_feat, pos_item_feat, neg_item_feat
def loss(self, predictions, labels):
user_feat, pos_item_feat, neg_item_feat = predictions
loss_func = Loss.factory(self.hparam)
loss = loss_func(user_feat, pos_item_feat, neg_item_feat)
return loss
def backward(self, loss):
scheduled_lr, _ = optimization(
loss=loss,
warmup_steps=int(self.run_config.max_steps *
self.hparam['warmup_proportion']),
num_train_steps=self.run_config.max_steps,
learning_rate=self.hparam['learning_rate'],
train_program=F.default_main_program(),
startup_prog=F.default_startup_program(),
weight_decay=self.hparam['weight_decay'],
scheduler="linear_warmup_decay",
use_fp16=self.hparam.get('use_fp16', 0),
use_dynamic_loss_scaling=True,
layer_decay_rate=self.hparam.get("layer_decay_rate", 0.),
n_layers=self.hparam.ernie_config["num_hidden_layers"])
propeller.summary.scalar('lr', scheduled_lr)
def metrics(self, predictions, label):
return {}
class TrainData(object):
def __init__(self, graph_work_path):
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
log.info("trainer_id: %s, trainer_count: %s." %
(trainer_id, trainer_count))
edges = np.load(
os.path.join(graph_work_path, "train_data.npy"), allow_pickle=True)
# edges is bidirectional.
train_usr = edges[trainer_id::trainer_count, 0]
train_ad = edges[trainer_id::trainer_count, 1]
returns = {"train_data": [train_usr, train_ad]}
if os.path.exists(os.path.join(graph_work_path, "neg_samples.npy")):
neg_samples = np.load(
os.path.join(graph_work_path, "neg_samples.npy"),
allow_pickle=True)
if neg_samples.size != 0:
train_negs = neg_samples[trainer_id::trainer_count]
returns["train_data"].append(train_negs)
log.info("Load train_data done.")
self.data = returns
def __getitem__(self, index):
return [data[index] for data in self.data["train_data"]]
def __len__(self):
return len(self.data["train_data"][0])
class PredictData(object):
def __init__(self, num_nodes):
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
train_usr = np.arange(trainer_id, num_nodes, trainer_count)
#self.data = (train_usr, train_usr)
self.data = train_usr
def __getitem__(self, index):
return [self.data[index], self.data[index]]
def load_tokenizer(ernie_name):
if "tiny" in config.ernie_name:
tokenizer = ErnieTinyTokenizer.from_pretrained(ernie_name)
else:
tokenizer = ErnieTokenizer.from_pretrained(ernie_name)
return tokenizer
def train(config):
# Build Train Data
data = TrainData(config.graph_work_path)
train_iter = BatchGraphGenerator(
graph_wrappers=[1],
batch_size=config.batch_size,
data=data,
samples=config.samples,
num_workers=config.sample_workers,
feed_name_list=None,
use_pyreader=False,
phase="train",
graph_data_path=config.graph_work_path,
shuffle=True,
neg_type=config.neg_type)
train_ds = Dataset.from_generator_func(train_iter).repeat(config.epochs)
dev_ds = Dataset.from_generator_func(train_iter)
ernie_cfg_dict, ernie_param_path = PretrainedModelLoader.from_pretrained(
config.ernie_name)
if "warm_start_from" not in config:
warm_start_from = ernie_param_path
else:
ernie_param_path = config.ernie_param_path
if "ernie_config" not in config:
config.ernie_config = ernie_cfg_dict
ws = propeller.WarmStartSetting(
predicate_fn=lambda v: os.path.exists(os.path.join(warm_start_from, v.name)),
from_dir=warm_start_from
)
train_ds.name = "train"
train_ds.data_shapes = [[-1] + list(shape[1:])
for shape in train_ds.data_shapes]
dev_ds.name = "dev"
dev_ds.data_shapes = [[-1] + list(shape[1:])
for shape in dev_ds.data_shapes]
tokenizer = load_tokenizer(config.ernie_name)
config.cls_id = tokenizer.cls_id
propeller.train.train_and_eval(
model_class_or_model_fn=ERNIESageLinkPredictModel,
params=config,
run_config=config,
train_dataset=train_ds,
eval_dataset={"eval": dev_ds},
warm_start_setting=ws, )
def tostr(data_array):
return " ".join(["%.5lf" % d for d in data_array])
def predict(config):
# Build Train Data
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
num_nodes = int(
np.load(os.path.join(config.graph_work_path, "num_nodes.npy")))
data = PredictData(num_nodes)
predict_iter = BatchGraphGenerator(
graph_wrappers=[1],
batch_size=config.infer_batch_size,
data=data,
samples=config.samples,
num_workers=config.sample_workers,
feed_name_list=None,
use_pyreader=False,
phase="predict",
graph_data_path=config.graph_work_path,
shuffle=False,
neg_type=config.neg_type)
predict_ds = Dataset.from_generator_func(predict_iter)
predict_ds.name = "predict"
predict_ds.data_shapes = [[-1] + list(shape[1:])
for shape in predict_ds.data_shapes]
tokenizer = load_tokenizer(config.ernie_name)
config.cls_id = tokenizer.cls_id
ernie_cfg_dict, ernie_param_path = PretrainedModelLoader.from_pretrained(
config.ernie_name)
config.ernie_config = ernie_cfg_dict
est = propeller.Learner(ERNIESageLinkPredictModel, config, config)
id2str = io.open(
os.path.join(config.graph_work_path, "terms.txt"),
encoding=config.encoding).readlines()
fout = io.open(
"%s/part-%s" % (config.model_dir, trainer_id), "w", encoding="utf8")
if "infer_model" in config:
predict_result_iter = est.predict(predict_ds, ckpt_path=config["infer_model"])
else:
predict_result_iter = est.predict(predict_ds, ckpt=-1)
for user_feat, user_real_index in predict_result_iter:
sri = id2str[int(user_real_index)].strip("\n")
line = "{}\t{}\n".format(sri, tostr(user_feat))
fout.write(line)
fout.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='main')
parser.add_argument("--conf", type=str, default="./config.yaml")
parser.add_argument("--do_predict", action='store_true', default=False)
args = parser.parse_args()
config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
print(config)
if args.do_predict:
predict(config)
else:
train(config)