-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathviewer.py
555 lines (500 loc) · 22.9 KB
/
viewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import os
import sys
import math
import glob
import time
import json
import torch
import numpy as np
import trimesh
import viser
import viser.transforms as vtf
import threading
import warnings
warnings.filterwarnings('ignore')
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(current_dir, '2d_gaussian_splatting'))
from pathlib import Path
from argparse import ArgumentParser
from typing import Tuple, Literal, List
from viser.theme import TitlebarButton, TitlebarConfig, TitlebarImage
from arguments import ModelParams, PipelineParams, get_combined_args
from internal.viewer import ViewerRenderer, ClientThread
from internal.viewer import GaussianModelforViewer as GaussianModel
from internal.viewer.ui import RenderPanel, TransformPanel, EditPanel
DROPDOWN_USE_DIRECT_APPEARANCE_EMBEDDING_VALUE = "@Direct"
class Viewer:
def __init__(
self,
args,
model_paths: str,
source_path: str = '',
host: str = "0.0.0.0",
port: int = 8080,
background_color: Tuple = (0.5, 0.5, 0.5),
image_format: Literal["jpeg", "png"] = "jpeg",
reorient: Literal["auto", "enable", "disable"] = "auto",
sh_degree: int = 3,
enable_transform: bool = False,
show_cameras: bool = False,
cameras_json: str = None,
up: list = None,
default_camera_position: List = None,
default_camera_look_at: List = None,
no_edit_panel: bool = False,
no_render_panel: bool = False,
iterations: int=30000,
crop_box_size: float=16.0,
from_direct_path: str = None,
is_training: bool = False,
):
self.render_type_name = {
"RGB": 'render',
"Edge": 'edge',
"Alpha": 'rend_alpha',
"Normal": 'rend_normal',
"View-Normal": 'view_normal',
"Depth": 'surf_depth',
"Depth-Distort": 'rend_dist',
"Depth-to-Normal": 'surf_normal',
"Depth-to-Curvature": 'curvature',
"None": 'render',
}
self.args = args
self.model_paths = model_paths[0]
self.source_path = source_path
self.cameras_json = os.path.join(self.model_paths, "cameras.json") if cameras_json is None else cameras_json
self.host = host
self.port = port
self.background_color = torch.tensor(background_color, dtype=torch.float32, device="cuda")
self.image_format = image_format
self.sh_degree = sh_degree
self.enable_transform = enable_transform
self.show_cameras = show_cameras
self.crop_box_size = crop_box_size
self.device = torch.device("cuda")
self.total_device_memory = torch.cuda.get_device_properties(self.device).total_memory / 1024 ** 2
self.up_direction = np.asarray([0., 0., 1.])
self.camera_center = np.asarray([0., 0., 0.])
self.default_camera_position = default_camera_position
self.default_camera_look_at = default_camera_look_at
self.is_training = is_training
self.show_edit_panel = ~no_edit_panel
self.show_render_panel = ~no_render_panel
# init model & scene
self._init_models(iterations)
self._init_scene_camera_transform(self.cameras_json, reorient, up)
self._init_camera_poses(self.cameras_json)
self.clients = {}
def _init_models(self, iterations):
# init gaussian model & renderer
self.gaussian_model = GaussianModel(sh_degree=self.sh_degree)
if not self.is_training:
self.iteration = iterations
self.ply_path = os.path.join(self.model_paths, "point_cloud", f"iteration_{iterations}", "point_cloud.ply") if not self.model_paths.lower().endswith('.ply') else self.model_paths
if not os.path.exists(self.ply_path):
print(f'[Alert] there is no pointcloud in: {self.ply_path}')
raise FileNotFoundError
print(f'[INFO] ply path loaded from: {self.ply_path}')
self.gaussian_model.load_ply(self.ply_path)
print(f'[INFO] number of points: {self.gaussian_model._xyz.shape[0]}')
self.viewer_renderer = ViewerRenderer(self.gaussian_model, self.background_color, not self.is_training)
def _init_scene_camera_transform(self, cameras_json_path, mode, up):
transform = torch.eye(4, dtype=torch.float)
self.camera_transform = transform
if mode == "disable" or not os.path.exists(cameras_json_path): return
print(f"[Info] Load cameras from: {cameras_json_path}")
with open(cameras_json_path, "r") as f:
cameras = json.load(f)
up_vector = torch.zeros(3)
for cam in cameras:
up_vector += torch.tensor(cam["rotation"])[:3, 1]
up_vector = -up_vector / torch.linalg.norm(up_vector)
print(f"[INFO] up vector = {up_vector}")
self.up_direction = up_vector.numpy()
if up is not None:
transform = torch.eye(4, dtype=torch.float)
up_vector = torch.tensor(up)
up_vector = -up_vector / torch.linalg.norm(up_vector)
self.up_direction = up_vector.numpy()
self.camera_transform = transform
def _init_camera_poses(self, cameras_json_path):
if not os.path.exists(cameras_json_path):
return []
with open(cameras_json_path, "r") as f:
camera_poses = json.load(f)
if camera_poses:
self.camera_center = np.mean(np.asarray([i["position"] for i in camera_poses]), axis=0)
self.camera_poses = camera_poses
def _get_training_gaussians(self, new_gaussians):
# slow and large gpu consumption
self.gaussian_model._xyz = new_gaussians._xyz.clone().detach()
self.gaussian_model._scaling = new_gaussians._scaling.clone().detach()
self.gaussian_model._opacity = new_gaussians._opacity.clone().detach()
self.gaussian_model._rotation = new_gaussians._rotation.clone().detach()
self.gaussian_model._features_dc = new_gaussians._features_dc.clone().detach()
self.gaussian_model._features_rest = new_gaussians._features_rest.clone().detach()
self.viewer_renderer = ViewerRenderer(self.gaussian_model, self.background_color, self.is_training)
def get_gpu_memory_usage(self):
total_memory = torch.cuda.memory_allocated() + torch.cuda.memory_reserved()
return f"{total_memory / 1024 ** 2:.1f} / {self.total_device_memory:.1f} MB"
def add_cameras_to_scene(self, viser_server):
if len(self.camera_poses) == 0:
return
self.camera_handles = []
camera_pose_transform = np.linalg.inv(self.camera_transform.cpu().numpy())
for camera in self.camera_poses:
name = camera["img_name"]
c2w = np.eye(4)
c2w[:3, :3] = np.asarray(camera["rotation"])
c2w[:3, 3] = np.asarray(camera["position"])
c2w[:3, 1:3] *= -1
c2w = np.matmul(camera_pose_transform, c2w)
R = vtf.SO3.from_matrix(c2w[:3, :3])
R = R @ vtf.SO3.from_x_radians(np.pi)
cx = camera["width"] // 2
cy = camera["height"] // 2
fx = camera["fx"]
camera_handle = viser_server.add_camera_frustum(
name="cameras/{}".format(name),
fov=float(2 * np.arctan(cx / fx)),
scale=0.05,
aspect=float(cx / cy),
wxyz=R.wxyz,
position=c2w[:3, 3],
color=(255, 255, 0),
)
@camera_handle.on_click
def _(event: viser.SceneNodePointerEvent[viser.CameraFrustumHandle]) -> None:
with event.client.atomic():
event.client.camera.position = event.target.position
event.client.camera.wxyz = event.target.wxyz
self.camera_handles.append(camera_handle)
self.show_cameras_frustrum = viser_server.add_gui_button("Show Train Cameras")
self.camera_visible = True
@self.show_cameras_frustrum.on_click
def toggle_camera_visibility(_):
with viser_server.atomic():
self.camera_visible = not self.camera_visible
for i in self.camera_handles:
i.visible = self.camera_visible
def start(self, block: bool = True, server_config_fun=None, tab_config_fun=None):
# create viser server
server = viser.ViserServer(host=self.host, port=self.port)
self._setup_titles(server)
if server_config_fun is not None:
server_config_fun(self, server)
tabs = server.add_gui_tab_group()
if tab_config_fun is not None:
tab_config_fun(self, server, tabs)
# setup panels
self._setup_general_features_folder(server, tabs)
if self.show_edit_panel:
with tabs.add_tab("Edit") as edit_tab:
self.edit_panel = EditPanel(server, self, edit_tab)
@self.edit_panel.show_point_cloud_checkbox.on_update
@self.edit_panel.show_mesh_button.on_click
@self.edit_panel.unshow_mesh_button.on_click
def _(event):
with server.atomic(): self._handle_option_updated(_)
self.transform_panel: TransformPanel = None
if self.enable_transform:
with tabs.add_tab("Transform"):
self.transform_panel = TransformPanel(server, self)
if self.show_render_panel:
with tabs.add_tab("Render"):
self.render_panel = RenderPanel(server,
self,
self.model_paths,
Path('./renders'),
orientation_transform=torch.linalg.inv(self.camera_transform).cpu().numpy(),
enable_transform=self.enable_transform,
background_color=self.background_color.detach().cpu().numpy().tolist(),
sh_degree=self.sh_degree,)
# register hooks
server.on_client_connect(self._handle_new_client)
server.on_client_disconnect(self._handle_client_disconnect)
if block is True:
while True:
time.sleep(999)
def _setup_titles(self, server):
buttons = (
TitlebarButton(
text="Simple Viser Viewer for 2D Gaussian Splatting",
icon="GitHub",
href="https://github.com/hwanhuh/2D-GS-Viser-Viewer/tree/main",
),
TitlebarButton(
text="Hwan Heo",
icon="GitHub",
href="https://github.com/hwanhuh",
),
)
image = TitlebarImage(
image_url_light="https://viser.studio/latest/_static/logo.svg",
image_alt="Logo",
href="https://github.com/nerfstudio-project/viser"
)
titlebar_theme = TitlebarConfig(buttons=buttons, image=image)
brand_color = server.add_gui_rgb("Brand color", (10, 10, 10), visible=False)
server.configure_theme(
titlebar_content=titlebar_theme,
show_logo=True,
brand_color=brand_color.value,
)
def _setup_general_features_folder(self, server, tabs):
with tabs.add_tab("General"):
if self.is_training:
with server.add_gui_folder("Training Infos"):
self.iter = server.add_gui_text('Iteration', initial_value = '0')
self.loss = server.add_gui_text('Loss', initial_value = '0.0')
self.dist = server.add_gui_text('distortion', initial_value = '0.0')
self.norm = server.add_gui_text('normal', initial_value = '0.0')
self.gpu_mem = server.add_gui_text(
'Memory Usage',
initial_value = self.get_gpu_memory_usage()
)
self.fps = server.add_gui_text(
'fps',
initial_value = ' frame/sec'
)
else:
with server.add_gui_folder("Status"):
self.gpu_mem = server.add_gui_text(
'Memory Usage',
initial_value = self.get_gpu_memory_usage()
)
self.fps = server.add_gui_text(
'fps',
initial_value = ' frame/sec'
)
with server.add_gui_folder("Image Options"):
self.max_res_when_static = server.add_gui_slider(
"Max Res",
min=128,
max=3840,
step=128,
initial_value=1920,
)
self.max_res_when_static.on_update(self._handle_option_updated)
self.max_res_when_moving = server.add_gui_slider(
"(when Move)",
min=128,
max=1920,
step=128,
initial_value=1024,
)
self.jpeg_quality_when_static = server.add_gui_slider(
"JPEG Quality",
min=0,
max=100,
step=1,
initial_value=100,
)
self.jpeg_quality_when_static.on_update(self._handle_option_updated)
self.jpeg_quality_when_moving = server.add_gui_slider(
"(when Move)",
min=0,
max=100,
step=1,
initial_value=60,
)
with server.add_gui_folder("Render Options"):
self.render_type = server.add_gui_dropdown(
"Render Type", tuple(self.render_type_name.keys())[:-1]
)
self.depth_ratio_slider = server.add_gui_slider(
"Depth Ratio (mean ~ med)",
min=0.,
max=1.,
step=0.1,
initial_value=0.,
)
with server.add_gui_folder("screen split"):
self.enable_split = server.add_gui_checkbox(
"use Split",
initial_value=False,
)
self.mode_slider = server.add_gui_slider(
"Split Slider",
min=0.,
max=0.99,
step=0.01,
initial_value=0.5,
)
self.render_type1 = server.add_gui_dropdown(
"Left Type", tuple(self.render_type_name.keys())[:-1]
)
self.render_type2 = server.add_gui_dropdown(
"Right Type", tuple(self.render_type_name.keys())[:-1]
)
with server.add_gui_folder("Gaussian Model"):
self.enable_ptc = server.add_gui_checkbox(
"as Pointcloud",
initial_value=False,
)
self.surfel_mode = server.add_gui_button_group("View Type", ("ptc", "disk"))
self.point_size = server.add_gui_slider(
"Point Size",
min=0.001,
max=0.1,
initial_value=0.01,
step=0.001,
)
self.scale_slider = server.add_gui_slider(
"Scaler",
min=0.1,
max=2.,
step=0.1,
initial_value=1.,
)
self.sparsity_slider = server.add_gui_slider(
"Sparsity",
min=1,
max=10,
step=1,
initial_value=1,
)
if self.viewer_renderer.gaussian_model.max_sh_degree > 0:
self.active_sh_degree_slider = server.add_gui_slider(
"SH Degree",
min=0,
max=self.viewer_renderer.gaussian_model.max_sh_degree,
step=1,
initial_value=self.viewer_renderer.gaussian_model.max_sh_degree,
)
@self.active_sh_degree_slider.on_update
def _(event):
with server.atomic(): self._handle_option_updated(_)
with server.add_gui_folder("Crop Box"):
self.enable_crop = server.add_gui_checkbox(
"use Crop",
initial_value=False,
)
self.box_x = server.add_gui_multi_slider(
'x range',
min = -self.crop_box_size,
max = self.crop_box_size,
step = 0.1,
initial_value= [-4.0, 4.0]
)
self.box_y = server.add_gui_multi_slider(
'y range',
min = -self.crop_box_size,
max = self.crop_box_size,
step = 0.1,
initial_value=[-4.0, 4.0]
)
self.box_z = server.add_gui_multi_slider(
'z range',
min = -self.crop_box_size,
max = self.crop_box_size,
step = 0.1,
initial_value=[-4.0, 4.0]
)
# add cameras
if self.show_cameras:
self.add_cameras_to_scene(server)
@self.render_type.on_update
@self.render_type1.on_update
@self.render_type2.on_update
@self.enable_split.on_update
@self.mode_slider.on_update
@self.depth_ratio_slider.on_update
@self.scale_slider.on_update
@self.sparsity_slider.on_update
@self.enable_ptc.on_update
@self.surfel_mode.on_click
@self.point_size.on_update
@self.enable_crop.on_update
@self.box_x.on_update
@self.box_y.on_update
@self.box_z.on_update
def _(event):
with server.atomic(): self._handle_option_updated(_)
go_to_scene_center = server.add_gui_button("Go to scene center",)
@go_to_scene_center.on_click
def _(event: viser.GuiEvent) -> None:
assert event.client is not None
event.client.camera.position = self.camera_center + np.asarray([2.5, 0., 0.])
event.client.camera.look_at = self.camera_center
def rerender_for_all_client(self):
for client_id in self.clients:
try:
# switch to low resolution mode first, then notify the client to render
self.clients[client_id].state = "low"
self.clients[client_id].render_trigger.set()
except:
# ignore errors
pass
def _handle_option_updated(self, _):
"""
Simply push new render to all client
"""
return self.rerender_for_all_client()
def _handle_new_client(self, client: viser.ClientHandle) -> None:
"""
Create and start a thread for every new client
"""
# create client thread
client_thread = ClientThread(self, self.viewer_renderer, client)
client_thread.start()
# store this thread
self.clients[client.client_id] = client_thread
def _handle_client_disconnect(self, client: viser.ClientHandle):
"""
Destroy client thread when client disconnected
"""
try:
self.clients[client.client_id].stop()
del self.clients[client.client_id]
except Exception as err:
print(err)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("model_paths", type=str, nargs="+")
parser.add_argument("--source_path", "-s", type=str, default="")
parser.add_argument("--host", "-a", type=str, default="0.0.0.0")
parser.add_argument("--port", "-p", type=int, default=8080)
parser.add_argument("--background_color", "-b",
type=str, nargs="+", default=["gray"],
help="e.g.: white, gray, black, [0 0 0], [0.5 0.5 0.5], [1 1 1]")
parser.add_argument("--image_format", "--image-format", "-f", type=str, default="jpeg")
parser.add_argument("--reorient", "-r", type=str, default="auto",
help="whether reorient the scene, available values: auto, enable, disable")
parser.add_argument("--sh_degree", "--sh-degree", "--sh",
type=int, default=3)
parser.add_argument("--enable_transform", "--enable-transform",
action="store_true", default=False,
help="Enable transform options on Web UI. May consume more memory")
parser.add_argument("--show_cameras", "--show-cameras",
action="store_true")
parser.add_argument("--cameras-json", "--cameras_json", type=str, default=None)
parser.add_argument("--up", nargs=3, required=False, type=float, default=None)
parser.add_argument("--default_camera_position", "--dcp", nargs=3, required=False, type=float, default=None)
parser.add_argument("--default_camera_look_at", "--dcla", nargs=3, required=False, type=float, default=None)
parser.add_argument("--no_edit_panel", action="store_true", default=False)
parser.add_argument("--no_render_panel", action="store_true", default=False)
parser.add_argument("--iterations", type=int, default=30000)
parser.add_argument("--crop_box_size", type=float, default=16.0)
parser.add_argument("--float32_matmul_precision", "--fp", type=str, default=None)
parser.add_argument("--from_direct_path", type=str, default=None)
args, unknown_args = parser.parse_known_args()
# set torch float32_matmul_precision
if args.float32_matmul_precision is not None:
torch.set_float32_matmul_precision(args.float32_matmul_precision)
del args.float32_matmul_precision
# arguments post process
if len(args.background_color) == 1 and isinstance(args.background_color[0], str):
if args.background_color[0] == "white":
args.background_color = [1., 1., 1.]
elif args.background_color[0] == "black":
args.background_color = [0., 0., 0.]
else:
args.background_color = [0.5, 0.5, 0.5]
else:
args.background_color = tuple([float(i) for i in args.background_color])
# create viewer
viewer_init_args = {key: getattr(args, key) for key in vars(args)}
viewer = Viewer(args, **viewer_init_args)
viewer.start()