-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaster_file_online_test.m
111 lines (93 loc) · 6.14 KB
/
master_file_online_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
%% SET ALL DEFAULT OPTIONS HERE
% UPDATE fall 2017: non-rigid and rigid registration scripts merged; red
% channel mean image can be computed while registering green channel; red
% channel binary can be computed during green channel registration
% (ly x lx x time like green channel)
% UPDATE end-of-summer 2017: default neuropil extraction is now "surround"
% and it's very fast. Cell extraction is on the raw data (no pixel-scaling or smoothing).
% UPDATE summer 2017: default spike deconvolution changed to a customized version of
% OASIS (due to our results in this paper http://www.biorxiv.org/content/early/2017/06/27/156786). Please
% Please download the OASIS code from https://github.com/zhoupc/OASIS_matlab, and
% add the folder, with its subfolders, to your Matlab path.
% UPDATE Christmas 2016: number of clusters determined automatically, but
% do specify the "diameter" of an average cell for best results. You can do this with either
% db(iexp).diameter, or ops0.diameter
% check out the README file for detailed instructions
% **** and for more options available ****
%addpath('D:\CODE\MariusBox\runSuite2P') % add the path to your make_db file
% overwrite any of these default options in your make_db file for individual experiments
%make_db_example; % RUN YOUR OWN MAKE_DB SCRIPT TO RUN HERE
% ops0.toolbox_path = 'C:\CODE\GitHub\Suite2P';
% if exist(ops0.toolbox_path, 'dir')
% addpath(genpath(ops0.toolbox_path)) % add local path to the toolbox
% else
% error('toolbox_path does not exist, please change toolbox_path');
% end
% mex -largeArrayDims SpikeDetection/deconvL0.c (or .cpp) % MAKE SURE YOU COMPILE THIS FIRST FOR DECONVOLUTION
%ops0.toolbox_path = 'C:\Users\User\Dropbox\Bruker1\Suite2P-master_online';
%addpath(genpath(ops0.toolbox_path))
%s2p_online_main
make_db_online
db0 = db;
ops0.useGPU = 0; % if you can use an Nvidia GPU in matlab this accelerates registration approx 3 times. You only need the Nvidia drivers installed (not CUDA).
ops0.fig = 1; % turn off figure generation with 0
ops0.diameter = 12; % most important parameter. Set here, or individually per experiment in make_db file
% ---- root paths for files and temporary storage (ideally an SSD drive. my SSD is C:/)
%ops0.RootStorage = '//zserver4/Data/2P'; % Suite2P assumes a folder structure, check out README file
ops0.temp_tiff = [ops0.RootStorage 'temp.tif']; % copies each remote tiff locally first, into this file
ops0.RegFileRoot = ops0.RootStorage; % location for binary file
ops0.DeleteBin = 1; % set to 1 for batch processing on a limited hard drive
ops0.ResultsSavePath = [ops0.RootStorage db(1).date filesep]; % a folder structure is created inside
ops0.RegFileTiffLocation = []; %'D:/DATA/'; % leave empty to NOT save registered tiffs (slow)
% if you want to save red channel tiffs, also set ops0.REDbinary = 1
% ---- registration options ------------------------------------- %
ops0.doRegistration = 1; % skip (0) if data is already registered
ops0.showTargetRegistration = 1; % shows the image targets for all planes to be registered
ops0.PhaseCorrelation = 1; % set to 0 for non-whitened cross-correlation
ops0.SubPixel = Inf; % 2 is alignment by 0.5 pixel, Inf is the exact number from phase correlation
ops0.NimgFirstRegistration = 500; % number of images to include in the first registration pass
ops0.nimgbegend = 0; % frames to average at beginning and end of blocks
ops0.dobidi = 1; % infer and apply bidirectional phase offset
% ---- cell detection options ------------------------------------------%
ops0.ShowCellMap = 1; % during optimization, show a figure of the clusters
ops0.sig = 0.5; % spatial smoothing length in pixels; encourages localized clusters
ops0.nSVDforROI = 300; % how many SVD components for cell clustering
ops0.NavgFramesSVD = 5000; % how many (binned) timepoints to do the SVD based on
ops0.signalExtraction = 'surround'; % how to extract ROI and neuropil signals:
% 'raw' (no cell overlaps), 'regression' (allows cell overlaps),
% 'surround' (no cell overlaps, surround neuropil model)
ops0.maxIterRoiDetection = 2;
% ----- neuropil options (if 'surround' option) ------------------- %
% all are in measurements of pixels
ops0.innerNeuropil = 1; % padding around cell to exclude from neuropil
ops0.outerNeuropil = Inf; % radius of neuropil surround
% if infinity, then neuropil surround radius is a function of cell size
if isinf(ops0.outerNeuropil)
ops0.minNeuropilPixels = 400; % minimum number of pixels in neuropil surround
ops0.ratioNeuropil = 5; % ratio btw neuropil radius and cell radius
% radius of surround neuropil = ops0.ratioNeuropil * (radius of cell)
end
% ----- spike deconvolution and neuropil subtraction options ----- %
ops0.imageRate = 30/db(1).nplanes; % imaging rate (cumulative over planes!). Approximate, for initialization of deconvolution kernel.
ops0.sensorTau = 2; % decay half-life (or timescale). Approximate, for initialization of deconvolution kernel.
ops0.maxNeurop = 1; % for the neuropil contamination to be less than this (sometimes good, i.e. for interneurons)
% ----- if you have a RED channel -----------------------------------%
ops0.AlignToRedChannel = 0; % compute registration offsets using red channel
ops0.REDbinary = 0; % make a binary file of registered red frames
% if db.expred, then compute mean red image for green experiments with red
% channel available while doing registration
ops0.redMeanImg = 0;
% for red cell detection (identify_redcells_sourcery.m)
% redratio = red pixels inside / red pixels outside
% redcell = redratio > mean(redratio) + redthres*std(redratio)
% notred = redratio < mean(redratio) + redmax*std(redratio)
ops0.redthres = 1.5; % the higher the thres the less red cells
ops0.redmax = 1; % the higher the max the more NON-red cells
%% RUN THE PIPELINE HERE
c = clock;
parfor iexp = 1
db = db0(iexp);
run_pipeline_online(db, ops0);
end
t_run = clock - c;
t_run = t_run(end-1:end);