From 6774c9ad0558bc632b771c90d29d80f460a66494 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Sat, 30 Sep 2023 15:52:15 +0000 Subject: [PATCH] build based on 15dc66b --- previews/PR334/.documenter-siteinfo.json | 2 +- previews/PR334/1dim-manifold.html | 4 +- previews/PR334/2dim-manifold-currying.html | 4 +- previews/PR334/2dim-manifold.html | 4 +- .../PR334/basicbsplineexporter/index.html | 2 +- previews/PR334/bsplinebasisall-1.html | 4 +- previews/PR334/bsplinebasisall-2.html | 4 +- previews/PR334/bsplinebasisall-3.html | 4 +- .../PR334/bsplinebasisderivativeplot.html | 4 +- previews/PR334/bsplinebasisplot.html | 4 +- previews/PR334/bsplinebasisplot2.html | 4 +- previews/PR334/cardioid.html | 6 +-- previews/PR334/contributing/index.html | 2 +- previews/PR334/geometricmodeling-arc.html | 4 +- previews/PR334/geometricmodeling-circle.html | 4 +- ...eometricmodeling-hyperbolicparaboloid.html | 4 +- .../PR334/geometricmodeling-paraboloid.html | 4 +- previews/PR334/geometricmodeling-torus.html | 4 +- previews/PR334/geometricmodeling/index.html | 2 +- previews/PR334/helix.html | 6 +-- previews/PR334/histogram-uniform.html | 4 +- previews/PR334/index.html | 2 +- previews/PR334/internal/index.html | 4 +- previews/PR334/interpolation_cubic.html | 4 +- previews/PR334/interpolation_linear.html | 4 +- previews/PR334/interpolation_periodic.html | 4 +- .../PR334/interpolation_periodic_sin.html | 4 +- previews/PR334/interpolations/index.html | 2 +- previews/PR334/math-bsplinebasis/index.html | 42 +++++++++---------- .../PR334/math-bsplinemanifold/index.html | 6 +-- previews/PR334/math-bsplinespace/index.html | 12 +++--- previews/PR334/math-derivative/index.html | 10 ++--- previews/PR334/math-fitting/index.html | 2 +- previews/PR334/math-inclusive/index.html | 10 ++--- previews/PR334/math-knotvector/index.html | 22 +++++----- .../math-rationalbsplinemanifold/index.html | 2 +- previews/PR334/math-refinement/index.html | 4 +- previews/PR334/math/index.html | 2 +- previews/PR334/plotlyjs/index.html | 2 +- previews/PR334/plots-arc.html | 4 +- previews/PR334/plots-bsplinebasis-raw.html | 4 +- previews/PR334/plots-bsplinebasis.html | 4 +- .../PR334/plots-bsplinebasisderivative.html | 4 +- previews/PR334/plots-cardioid.html | 4 +- previews/PR334/plots-helix.html | 4 +- previews/PR334/plots-surface.html | 4 +- previews/PR334/plots/index.html | 2 +- previews/PR334/subbsplineplot.html | 4 +- previews/PR334/subbsplineplot2.html | 4 +- previews/PR334/sumofbsplineplot.html | 4 +- previews/PR334/sumofbsplineplot2.html | 4 +- previews/PR334/sumofbsplineplot3.html | 4 +- 52 files changed, 134 insertions(+), 134 deletions(-) diff --git a/previews/PR334/.documenter-siteinfo.json b/previews/PR334/.documenter-siteinfo.json index 32ab9324c..3acc2aec6 100644 --- a/previews/PR334/.documenter-siteinfo.json +++ b/previews/PR334/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-09-30T14:59:47","documenter_version":"1.1.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-09-30T15:51:13","documenter_version":"1.1.0"}} \ No newline at end of file diff --git a/previews/PR334/1dim-manifold.html b/previews/PR334/1dim-manifold.html index 9cec63286..adc90fb9a 100644 --- a/previews/PR334/1dim-manifold.html +++ b/previews/PR334/1dim-manifold.html @@ -1,7 +1,7 @@ -
+
+
+
+
+
+
+
+
+
@@ -17,9 +17,9 @@ window.PLOTLYENV = window.PLOTLYENV || {} - if (document.getElementById('19daee5d-4636-4fb8-a05e-13a57c4f252b')) { + if (document.getElementById('a664966a-1f04-46de-8989-0fadf1b7abf7')) { Plotly.newPlot( - '19daee5d-4636-4fb8-a05e-13a57c4f252b', + 'a664966a-1f04-46de-8989-0fadf1b7abf7', [{"x":[1.999759001518061,2.0015083833616054,1.788116686260899,1.0176731052593309,0.21435955333452697,-0.24586426105910286,-0.27200580243640377,-0.07533894204442493,0.0012247388041783502,-0.00020885889244779896,0.0012247388041780813,-0.07533894204442466,-0.27200580243640393,-0.24586426105910336,0.21435955333452728,1.01767310525933,1.7881166862609021,2.0015083833616027,1.9997590015180586],"line":{"color":"blue"},"y":[0.000258648120407782,0.2988351812852854,0.8960860814400403,1.3666845344070295,1.2565473946695778,0.759996911845506,0.2504295376978045,0.0014193036958738883,0.0001811887931162982,-1.1492543028346347e-17,-0.0001811887931160482,-0.001419303695873413,-0.250429537697805,-0.7599969118455058,-1.2565473946695767,-1.3666845344070317,-0.8960860814400412,-0.2988351812852838,-0.0002586481204076563],"type":"scatter","name":"control points","marker":{"size":8}},{"mode":"lines","line":{"color":"red"},"y":[0.000258648120407782,0.05060881196427182,0.10088426242113469,0.15100935827558765,0.200908458312222,0.25050592131562893,0.29972610607039973,0.3484933713611255,0.3967320759723978,0.4443665786888075,0.4913212382949461,0.5375204135754049,0.582888463314775,0.6273497462976473,0.6708286213086139,0.7132494471322655,0.7545365825531933,0.7946143863559888,0.8334072960590209,0.8708537608770228,0.9069222684189552,0.9415851875774109,0.9748148872449838,1.0065837363142671,1.0368641036778554,1.0656283582283417,1.092848868858319,1.118498004460382,1.142548133927124,1.164971626151138,1.1857408500250186,1.204828174441359,1.222205968292752,1.2378466004717927,1.2517224398710736,1.2638058553831892,1.2740700315423261,1.2825150992642202,1.2891736640836262,1.2940802649079637,1.297269440644654,1.2987757302011183,1.2986336724847776,1.2968778064030517,1.2935426708633622,1.2886628047731306,1.2822727470397763,1.2744070365707216,1.265100212273386,1.2543868130551914,1.2423013778235585,1.2288784454859079,1.2141525549496603,1.1981582451222377,1.180931464236402,1.1625260448441825,1.143008112913044,1.1224440360643173,1.1009001819193323,1.07844291809942,1.055138612225911,1.0310536319201355,1.0062543448034234,0.9808071184971064,0.9547783206225143,0.9282343188009774,0.9012414806538265,0.8738661738023922,0.8461747658680046,0.8182336244719941,0.7901091172356915,0.7618676117804275,0.7335736135437414,0.7052801358752427,0.6770358125441437,0.6488892686984364,0.6208891294861111,0.59308402005516,0.5655225655535742,0.5382533911293447,0.5113251219304633,0.48478638310492095,0.45868579980070906,0.43307199716581957,0.4079936003482427,0.3834992344959706,0.3596375247569947,0.3364570962793056,0.3140065742108951,0.2923345806016259,0.27147929370892476,0.251445137676135,0.2322297300574618,0.21383068840711136,0.19624563027928996,0.17947217322820277,0.16350793480805606,0.14835053257305597,0.13399758407740783,0.12044670687531789,0.10769551852099221,0.0957416365686362,0.084582678572456,0.07421626208665766,0.06464000466544678,0.05585152386302952,0.04784843723361147,0.04062820264367164,0.03417436516646768,0.02844595780915113,0.0233995184581384,0.01899158499984583,0.015178695320689524,0.011917387307085837,0.009164198845451086,0.00687566782220144,0.005008332123753223,0.0035187296365227255,0.0023633982469261645,0.0014988758413798505,0.0008817003063000227,0.0004684095281029673,0.00021554139320495685,7.96337880222513e-5,1.7224598971125096e-5,-1.7224598971125438e-5,-7.963378802220866e-5,-0.00021554139320487437,-0.0004684095281028482,-0.00088170030629987,-0.0014988758413796678,-0.002363398246925955,-0.0035187296365224935,-0.005008332123752971,-0.006875667822201172,-0.009164198845450805,-0.011917387307085546,-0.015178695320689228,-0.01899158499984553,-0.02339951845813811,-0.028445957809150844,-0.0341743651664674,-0.04062820264367139,-0.04784843723361123,-0.0558515238630293,-0.06464000466544659,-0.0742162620866575,-0.08458267857245584,-0.09574163656863609,-0.10769551852099211,-0.12044670687531786,-0.13399758407740786,-0.14835053257305597,-0.16350793480805614,-0.17947217322820286,-0.1962456302792901,-0.2138306884071115,-0.23222973005746197,-0.25144513767613524,-0.271479293708925,-0.29233458060162576,-0.3140065742108957,-0.33645709627930576,-0.3596375247569945,-0.38349923449597123,-0.407993600348243,-0.43307199716581934,-0.45868579980070967,-0.4847863831049211,-0.511325121930463,-0.5382533911293451,-0.5655225655535742,-0.5930840200551597,-0.6208891294861116,-0.6488892686984362,-0.6770358125441436,-0.7052801358752431,-0.7335736135437416,-0.7618676117804273,-0.7901091172356917,-0.818233624471994,-0.846174765868004,-0.8738661738023911,-0.9012414806538263,-0.9282343188009768,-0.9547783206225133,-0.980807118497106,-1.006254344803423,-1.0310536319201344,-1.0551386122259105,-1.0784429180994195,-1.1009001819193316,-1.122444036064317,-1.1430081129130434,-1.1625260448441816,-1.1809314642364017,-1.1981582451222372,-1.2141525549496601,-1.228878445485908,-1.2423013778235583,-1.2543868130551914,-1.2651002122733863,-1.2744070365707216,-1.2822727470397763,-1.288662804773131,-1.293542670863363,-1.2968778064030524,-1.2986336724847782,-1.2987757302011194,-1.2972694406446552,-1.294080264907965,-1.2891736640836273,-1.2825150992642218,-1.274070031542328,-1.2638058553831901,-1.2517224398710751,-1.2378466004717945,-1.2222059682927535,-1.2048281744413603,-1.1857408500250206,-1.1649716261511394,-1.1425481339271253,-1.1184980044603838,-1.09284886885832,-1.0656283582283428,-1.036864103677857,-1.0065837363142682,-0.9748148872449849,-0.9415851875774119,-0.9069222684189555,-0.8708537608770236,-0.8334072960590213,-0.7946143863559885,-0.7545365825531933,-0.7132494471322658,-0.6708286213086131,-0.6273497462976472,-0.5828884633147747,-0.5375204135754051,-0.4913212382949452,-0.44436657868880697,-0.3967320759723978,-0.34849337136112435,-0.299726106070399,-0.25050592131562877,-0.20090845831222073,-0.1510093582755871,-0.1008842624211348,-0.05060881196427089,-0.0002586481204076563],"type":"scatter","name":"B-spline curve","x":[1.999759001518061,1.9990315480100604,1.9962827706568063,1.9915482735810333,1.984863660905477,1.9762645367528702,1.965786505245949,1.9534651705074464,1.939336136660099,1.9234350078266398,1.9057973881298043,1.886458881692327,1.865455092636942,1.8428216250863838,1.8185940831633884,1.7928080709906893,1.7654991926910208,1.7367030523871183,1.706455317503469,1.6748029208321245,1.6418169459562464,1.6075715970009767,1.5721410780914593,1.5355995933528368,1.4980213469102535,1.4594805428888522,1.420051385413775,1.379808078610167,1.3388248266031697,1.2971758335179275,1.2549353034795836,1.2121774406132808,1.168976449044162,1.1254065328973715,1.0815418962980516,1.037456743371346,0.9932251814083063,0.9489181185885196,0.9046026076601557,0.860345471838723,0.8162135343397294,0.7722736183786835,0.728592547171094,0.685237143932469,0.6422742318783163,0.5997706342241456,0.5577931741854641,0.516408674977781,0.4756839598166035,0.43568585191744125,0.39648117449580217,0.3581367507671941,0.3207194039471262,0.2842959572511066,0.2489309911848961,0.2146606262983245,0.18150142019021556,0.14946954590696643,0.11858117649497425,0.08885248500063689,0.06029964447035134,0.03293882795051514,0.006786208487525381,-0.018142040872220093,-0.04182974708232417,-0.06426073709638967,-0.08541883786801871,-0.10528787635081427,-0.12385167949837886,-0.1410940742643153,-0.15699888760222588,-0.17154994646571337,-0.18473671657772153,-0.196583462177543,-0.20712770905458733,-0.2164070091036779,-0.22445891421963776,-0.2313209762972901,-0.237030747231458,-0.24162577891696474,-0.2451436232486334,-0.24762183212128736,-0.2490979574297495,-0.24960955106884317,-0.24919416493339147,-0.24788935091821765,-0.24573266091814475,-0.24276164682799603,-0.23901386054259466,-0.2345268549646056,-0.22934158043117112,-0.2235099677151012,-0.21708616181748974,-0.21012430773943105,-0.20267855048201958,-0.1948030350463491,-0.18655190643351408,-0.1779793096446088,-0.1691393896807272,-0.16008629154296367,-0.1508741602324125,-0.14155714075016765,-0.13218937809732345,-0.12282501727497429,-0.11351820328421404,-0.10432308112613724,-0.0952937958018377,-0.08648438994608498,-0.07793998752758781,-0.06968999928417598,-0.06176223647985243,-0.0541845103786201,-0.046984632244481545,-0.04019041334143974,-0.03382966493349758,-0.027930198284657686,-0.022519824658922976,-0.017626355320296345,-0.01327760153278044,-0.009501374560378233,-0.006325485667092406,-0.0037777461169258473,-0.0018859671738814033,-0.0006779601019618208,-0.00018153616516995775,-0.0001815361651699792,-0.000677960101961878,-0.0018859671738814868,-0.00377774611692595,-0.006325485667092519,-0.009501374560378351,-0.013277601532780556,-0.017626355320296452,-0.022519824658923077,-0.02793019828465777,-0.033829664933497657,-0.04019041334143979,-0.04698463224448158,-0.05418451037862011,-0.06176223647985242,-0.06968999928417595,-0.07793998752758778,-0.08648438994608493,-0.09529379580183764,-0.10432308112613715,-0.11351820328421397,-0.12282501727497422,-0.1321893780973234,-0.1415571407501676,-0.15087416023241249,-0.1600862915429636,-0.16913938968072717,-0.17797930964460879,-0.18655190643351408,-0.19480303504634916,-0.2026785504820196,-0.21012430773943117,-0.21708616181748983,-0.22350996771510132,-0.22934158043117125,-0.23452685496460557,-0.2390138605425949,-0.2427616468279962,-0.24573266091814494,-0.24788935091821784,-0.24919416493339175,-0.24960955106884342,-0.24909795742974974,-0.24762183212128763,-0.24514362324863376,-0.24162577891696502,-0.23703074723145834,-0.23132097629729048,-0.22445891421963798,-0.21640700910367822,-0.20712770905458777,-0.1965834621775431,-0.18473671657772178,-0.1715499464657139,-0.15699888760222588,-0.14109407426431542,-0.12385167949837927,-0.10528787635081484,-0.0854188378680188,-0.06426073709638985,-0.04182974708232477,-0.01814204087222003,0.006786208487525272,0.032938827950514595,0.06029964447035153,0.0888524850006368,0.11858117649497399,0.14946954590696676,0.1815014201902156,0.2146606262983242,0.2489309911848964,0.28429595725110657,0.32071940394712584,0.35813675076719464,0.396481174495802,0.43568585191744075,0.47568395981660405,0.5164086749777808,0.5577931741854635,0.599770634224146,0.6422742318783166,0.6852371439324683,0.7285925471710945,0.7722736183786836,0.8162135343397288,0.8603454718387219,0.904602607660156,0.9489181185885195,0.9932251814083057,1.0374567433713462,1.0815418962980516,1.1254065328973712,1.168976449044163,1.212177440613281,1.2549353034795838,1.2971758335179289,1.3388248266031706,1.3798080786101674,1.4200513854137768,1.459480542888853,1.4980213469102543,1.535599593352839,1.572141078091461,1.6075715970009776,1.641816945956248,1.6748029208321262,1.7064553175034691,1.7367030523871196,1.7654991926910217,1.7928080709906897,1.8185940831633896,1.842821625086385,1.8654550926369413,1.886458881692326,1.9057973881298036,1.9234350078266385,1.9393361366600974,1.953465170507445,1.9657865052459464,1.9762645367528677,1.9848636609054746,1.991548273581031,1.9962827706568038,1.9990315480100578,1.9997590015180586]}], {"template":{"layout":{"coloraxis":{"colorbar":{"ticks":"","outlinewidth":0}},"xaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"hovermode":"closest","paper_bgcolor":"white","geo":{"showlakes":true,"showland":true,"landcolor":"#E5ECF6","bgcolor":"white","subunitcolor":"white","lakecolor":"white"},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"yaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"shapedefaults":{"line":{"color":"#2a3f5f"}},"hoverlabel":{"align":"left"},"mapbox":{"style":"light"},"polar":{"angularaxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"autotypenumbers":"strict","font":{"color":"#2a3f5f"},"ternary":{"baxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"aaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"annotationdefaults":{"arrowhead":0,"arrowwidth":1,"arrowcolor":"#2a3f5f"},"plot_bgcolor":"#E5ECF6","title":{"x":0.05},"scene":{"xaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"zaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"yaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"}},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"]},"data":{"barpolar":[{"type":"barpolar","marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"carpet":[{"aaxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"},"type":"carpet","baxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"parcoords":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"parcoords"}],"scatter":[{"type":"scatter","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2dcontour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2dcontour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"mesh3d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"mesh3d"}],"surface":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"surface","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram":[{"type":"histogram","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"pie":[{"type":"pie","automargin":true}],"choropleth":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"choropleth"}],"heatmapgl":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmapgl","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"bar":[{"type":"bar","error_y":{"color":"#2a3f5f"},"error_x":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"heatmap":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmap","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contourcarpet"}],"table":[{"type":"table","header":{"line":{"color":"white"},"fill":{"color":"#C8D4E3"}},"cells":{"line":{"color":"white"},"fill":{"color":"#EBF0F8"}}}],"scatter3d":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"scatter3d","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2d","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}]}},"height":500,"margin":{"l":50,"b":50,"r":50,"t":60},"width":500}, {"editable":false,"responsive":true,"staticPlot":false,"scrollZoom":true}, diff --git a/previews/PR334/contributing/index.html b/previews/PR334/contributing/index.html index 687c01249..c99f061b1 100644 --- a/previews/PR334/contributing/index.html +++ b/previews/PR334/contributing/index.html @@ -1,2 +1,2 @@ -Contributing · BasicBSpline.jl

Contributing

The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!

Feel free to open issues and pull requests!

+Contributing · BasicBSpline.jl

Contributing

The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!

Feel free to open issues and pull requests!

diff --git a/previews/PR334/geometricmodeling-arc.html b/previews/PR334/geometricmodeling-arc.html index 3e23ddd42..811fa54d4 100644 --- a/previews/PR334/geometricmodeling-arc.html +++ b/previews/PR334/geometricmodeling-arc.html @@ -1,7 +1,7 @@ -
+
+
+
+
+
@@ -17,9 +17,9 @@ window.PLOTLYENV = window.PLOTLYENV || {} - if (document.getElementById('dc6c58d3-3da2-4a74-80ec-fc8af0fbd09b')) { + if (document.getElementById('f6b19585-f2d8-4773-a5d6-ecfa12c72b9c')) { Plotly.newPlot( - 'dc6c58d3-3da2-4a74-80ec-fc8af0fbd09b', + 'f6b19585-f2d8-4773-a5d6-ecfa12c72b9c', [{"x":[0.9953709320381128,1.019321397389834,0.2947842694597305,-1.2209024461609082,-0.8492251518754993,0.8483695529395563,1.2239110839089242,-0.30206030207110546,-1.3593687410804203,-0.3020603020711057,1.2239110839089242,0.8483695529395566,-0.8492251518754994,-1.2209024461609084,0.2947842694597287,1.0193213973898347,0.9953709320381123],"line":{"color":"blue"},"y":[0.0033962712301962316,0.4446750942572991,1.3217067455617062,0.5914273192366225,-1.0634935646239,-1.0620726715335462,0.5894312464269061,1.3250963187728528,4.2240516640035253e-16,-1.3250963187728526,-0.5894312464269077,1.0620726715335451,1.0634935646239012,-0.5914273192366217,-1.3217067455617044,-0.444675094257299,-0.0033962712301963682],"type":"scatter3d","name":"control points","z":[1.4983674023749671e-15,0.44879895051282703,1.3463968515384859,2.692793703076963,4.039190554615459,5.385587406153927,6.731984257692425,8.07838110923089,9.424777960769381,10.771174812307873,12.117571663846347,13.463968515384815,14.810365366923318,16.156762218461775,17.50315907000024,18.400756971025924,18.849555921538766],"marker":{"size":8}},{"mode":"lines","line":{"color":"red"},"y":[0.0033962712301962316,0.07774252706071076,0.1516756964733853,0.2248351000262815,0.29686005827746104,0.36738989178498577,0.43606392110691716,0.5025214668013169,0.5664018494262469,0.6273443895397688,0.6849884076999442,0.7389732244648349,0.7889381603925025,0.8345225360410082,0.8753656719684149,0.9111068887327832,0.9413855068921755,0.9658408470046529,0.9841131479289631,0.9960060720347576,1.0016736304088207,1.001315102960625,0.9951297695996421,0.9833169102353443,0.9660758047772038,0.9436057331346925,0.9161059752172829,0.8837758109344463,0.8468145201956556,0.8054213829103826,0.7597956789880996,0.710136688338278,0.6566436908703909,0.5995159664939095,0.5389527951183065,0.4751534566530542,0.40832063506726796,0.33876947437459837,0.26695065059304035,0.19332290862270698,0.11834499336371153,0.04247564971616751,-0.03382637741981166,-0.11010234314411271,-0.18589350255662218,-0.26074111075722683,-0.3341864228458131,-0.4057706939222677,-0.4750351790864772,-0.5415211334383279,-0.6047698120777072,-0.6643224701045014,-0.719720362618597,-0.7705047447198805,-0.81623723326697,-0.8567378355574689,-0.8920041726390097,-0.9220373569444673,-0.9468385009067153,-0.9664087169586281,-0.9807491175330805,-0.9898608150629462,-0.9937449219811,-0.9924025507204165,-0.9858348137137692,-0.9740428233940334,-0.9570276921940822,-0.934790532546791,-0.9073324568850336,-0.8746545776416843,-0.8367580072496185,-0.7936438581417088,-0.7453609931775856,-0.692252957248658,-0.6347755971759252,-0.5733849808471781,-0.5085371761502065,-0.4406882509728009,-0.37029427320275127,-0.2978113107278479,-0.2236954314358815,-0.1484027032146416,-0.07238919395191903,0.0038890284644964163,0.07997589614681437,0.15541534120724432,0.22975129575799635,0.30252769191128004,0.3732884617793053,0.4415775528149607,0.506990625899738,0.5692904786118451,0.6282736120010541,0.6837365271171363,0.7354757250098635,0.7832877067290069,0.826968973324339,0.8663160258456302,0.9011253653426535,0.9311934928651802,0.9563169094629815,0.9762921161858293,0.9909156140834954,0.9999839042057515,1.0032934876023687,1.0006408653231191,0.9918225384177743,0.9766372228221332,0.9550766064170917,0.9274723620886828,0.8941907703171116,0.8555981115825815,0.8120606663652953,0.7639447151454594,0.7116165384032758,0.6554424166189504,0.595788630272685,0.5330214598446865,0.46750718581515593,0.39961208866430065,0.32970244887232125,0.25814454691942534,0.18530466328581333,0.11154907845169287,0.03724407289726461,-0.037244072897263975,-0.11154907845169222,-0.1853046632858127,-0.25814454691942473,-0.32970244887232064,-0.39961208866430015,-0.46750718581515543,-0.533021459844686,-0.5957886302726846,-0.6554424166189499,-0.7116165384032752,-0.7639447151454591,-0.812060666365295,-0.8555981115825813,-0.8941907703171114,-0.9274723620886827,-0.9550766064170917,-0.9766372228221329,-0.9918225384177743,-1.0006408653231194,-1.003293487602369,-0.9999839042057518,-0.9909156140834958,-0.97629211618583,-0.956316909462982,-0.9311934928651809,-0.9011253653426542,-0.8663160258456314,-0.8269689733243392,-0.7832877067290078,-0.7354757250098638,-0.6837365271171374,-0.6282736120010544,-0.5692904786118462,-0.5069906258997383,-0.4415775528149618,-0.3732884617793057,-0.3025276919112813,-0.2297512957579967,-0.15541534120724562,-0.07997589614681466,-0.00388902846449772,0.07238919395191681,0.14840270321464036,0.22369543143587925,0.29781131072784667,0.3702942732027491,0.4406882509727996,0.5085371761502047,0.5733849808471769,0.6347755971759236,0.692252957248657,0.7453609931775842,0.7936438581417079,0.8367580072496171,0.8746545776416842,0.9073324568850332,0.9347905325467909,0.9570276921940819,0.974042823394033,0.9858348137137692,0.9924025507204164,0.9937449219811,0.9898608150629464,0.9807491175330805,0.9664087169586283,0.9468385009067155,0.9220373569444674,0.8920041726390102,0.85673783555747,0.8162372332669706,0.7705047447198817,0.7197203626185976,0.6643224701045027,0.6047698120777081,0.5415211334383295,0.4750351790864776,0.40577069392226894,0.33418642284581357,0.260741110757228,0.18589350255662268,0.11010234314411405,0.033826377419812176,-0.042475649716166186,-0.11834499336371106,-0.1933229086227055,-0.2669506505930398,-0.3387694743745971,-0.4083206350672657,-0.47515345665305425,-0.5389527951183062,-0.5995159664939085,-0.6566436908703891,-0.7101366883382783,-0.759795678988099,-0.8054213829103815,-0.8468145201956541,-0.8837758109344442,-0.9161059752172818,-0.9436057331346913,-0.9660758047772023,-0.9833169102353427,-0.995129769599641,-1.0013151029606235,-1.0016736304088196,-0.9960060720347566,-0.9841131479289614,-0.9658408470046517,-0.9413855068921745,-0.9111068887327827,-0.8753656719684132,-0.8345225360410075,-0.7889381603925019,-0.7389732244648348,-0.6849884076999424,-0.6273443895397677,-0.5664018494262466,-0.5025214668013176,-0.43606392110691533,-0.3673898917849848,-0.2968600582774611,-0.2248351000262824,-0.15167569647338366,-0.07774252706071,-0.0033962712301963682],"type":"scatter3d","name":"B-spline curve","z":[1.4983674023749671e-15,0.07570102779734561,0.15140205559468978,0.227103083392034,0.3028041111893782,0.37850513898672267,0.4542061667840671,0.5299071945814114,0.6056082223787559,0.6813092501761002,0.7570102779734448,0.8327113057707894,0.908412333568134,0.9841133613654782,1.059814389162823,1.1355154169601673,1.211216444757512,1.2869174725548564,1.3626185003522004,1.4383195281495451,1.5140205559468896,1.589721583744234,1.665422611541578,1.7411236393389222,1.8168246671362667,1.892525694933611,1.9682267227309556,2.043927750528299,2.1196287783256436,2.195329806122988,2.271030833920333,2.346731861717677,2.4224328895150213,2.498133917312366,2.5738349451097102,2.6495359729070547,2.7252370007043996,2.800938028501744,2.876639056299089,2.9523400840964333,3.0280411118937782,3.1037421396911236,3.1794431674884684,3.255144195285813,3.330845223083158,3.406546250880503,3.4822472786778476,3.557948306475192,3.6336493342725373,3.7093503620698813,3.7850513898672267,3.860752417664571,3.936453445461915,4.01215447325926,4.0878555010566044,4.163556528853949,4.239257556651292,4.314958584448638,4.390659612245981,4.466360640043325,4.542061667840669,4.617762695638012,4.6934637234353564,4.769164751232702,4.844865779030045,4.92056680682739,4.996267834624733,5.071968862422078,5.147669890219421,5.223370918016765,5.2990719458141085,5.374772973611453,5.450474001408799,5.526175029206143,5.601876057003488,5.677577084800832,5.753278112598176,5.828979140395521,5.904680168192867,5.980381195990211,6.056082223787556,6.131783251584902,6.2074842793822445,6.283185307179591,6.358886334976937,6.4345873627742805,6.510288390571626,6.585989418368969,6.661690446166316,6.737391473963659,6.813092501761003,6.888793529558347,6.964494557355692,7.040195585153035,7.11589661295038,7.191597640747723,7.267298668545068,7.34299969634241,7.418700724139754,7.494401751937098,7.570102779734442,7.6458038075317845,7.72150483532913,7.797205863126474,7.872906890923818,7.948607918721161,8.024308946518502,8.100009974315851,8.175711002113195,8.25141202991054,8.327113057707882,8.402814085505227,8.478515113302572,8.554216141099914,8.62991716889726,8.705618196694605,8.78131922449195,8.857020252289294,8.932721280086641,9.008422307883983,9.084123335681328,9.159824363478673,9.235525391276019,9.311226419073362,9.38692744687071,9.462628474668055,9.5383295024654,9.614030530262742,9.689731558060089,9.765432585857432,9.841133613654778,9.916834641452123,9.992535669249467,10.068236697046812,10.143937724844157,10.219638752641503,10.295339780438848,10.371040808236192,10.446741836033537,10.522442863830882,10.598143891628224,10.67384491942557,10.749545947222913,10.825246975020256,10.900948002817602,10.976649030614949,11.052350058412292,11.128051086209636,11.20375211400698,11.279453141804325,11.355154169601667,11.43085519739901,11.506556225196356,11.582257252993701,11.657958280791043,11.73365930858839,11.809360336385732,11.885061364183073,11.960762391980417,12.036463419777762,12.112164447575104,12.187865475372453,12.263566503169795,12.339267530967138,12.41496855876448,12.490669586561825,12.566370614359167,12.642071642156512,12.717772669953858,12.793473697751198,12.869174725548543,12.944875753345887,13.020576781143234,13.096277808940576,13.171978836737921,13.247679864535264,13.32338089233261,13.399081920129952,13.474782947927297,13.550483975724642,13.626185003521988,13.701886031319333,13.777587059116682,13.853288086914024,13.928989114711365,14.004690142508712,14.08039117030606,14.156092198103401,14.231793225900748,14.307494253698092,14.383195281495437,14.458896309292781,14.53459733709013,14.61029836488747,14.685999392684813,14.76170042048216,14.837401448279504,14.91310247607685,14.988803503874191,15.064504531671538,15.140205559468878,15.215906587266225,15.291607615063569,15.36730864286091,15.443009670658254,15.5187106984556,15.59441172625294,15.670112754050283,15.745813781847625,15.82151480964497,15.897215837442312,15.972916865239657,16.048617893037,16.124318920834344,16.200019948631688,16.275720976429028,16.351422004226375,16.427123032023715,16.502824059821062,16.57852508761841,16.654226115415746,16.729927143213093,16.805628171010433,16.88132919880778,16.957030226605124,17.032731254402464,17.10843228219981,17.184133309997158,17.259834337794498,17.335535365591845,17.41123639338919,17.486937421186532,17.56263844898388,17.638339476781223,17.714040504578566,17.78974153237592,17.865442560173264,17.941143587970604,18.01684461576795,18.0925456435653,18.168246671362642,18.243947699159996,18.31964872695734,18.395349754754683,18.47105078255203,18.546751810349377,18.62245283814672,18.698153865944075,18.77385489374142,18.849555921538766],"x":[0.9953709320381128,0.9958039190046631,0.9892469720434032,0.9760357419505834,0.9565058795224549,0.930993035555269,0.8998328608452753,0.8633610061887252,0.82191312238187,0.7758248602209602,0.7254318705022463,0.6710698040219795,0.6130743115764107,0.5517810439617904,0.4875256519743696,0.42064378641039923,0.35147109806612997,0.2803432377378128,0.20759598092194592,0.13358729514049983,0.0587227233690144,-0.01658604415663669,-0.09192731720057994,-0.16688940552694176,-0.24106061889984867,-0.3140292670834268,-0.38538365984180295,-0.4547121069391034,-0.5216029181394546,-0.5856444032069829,-0.646424871905815,-0.7035326340000769,-0.7565559992538954,-0.8050832774313966,-0.8487027782967071,-0.8870028116139534,-0.9195783975519709,-0.9462462481684996,-0.9670902490421011,-0.9822101918958317,-0.9917058684527484,-0.995677070435908,-0.9942235895683671,-0.9874452175731824,-0.9754417461734106,-0.9583129670921086,-0.9361586720523328,-0.9090786527771405,-0.8771727009895879,-0.8405406084127324,-0.7992821667696298,-0.7534971677833374,-0.7032854031769118,-0.6487466646734096,-0.5899971650721495,-0.5273615004049573,-0.46130750624268263,-0.3923058338414059,-0.32082713445720673,-0.24734205934616527,-0.17232125976436147,-0.09623538696787556,-0.019555092212787256,0.05724897324482327,0.133706158148876,0.20934581124329107,0.2836972812719882,0.3562899169788877,0.4266530671079093,0.4943160804029729,0.5588083056079982,0.6196590914669066,0.6764363747216658,0.7289462300836832,0.7770854855190366,0.8207511476419426,0.8598402230666177,0.8942497184072788,0.9238766402781424,0.948617995293425,0.9683707900673435,0.9830320312141145,0.9924987253479544,0.9966678790830803,0.9954364990337082,0.9887015918140551,0.9763601640383378,0.9583092223207724,0.9344457732755764,0.9046668553603394,0.8689768510459023,0.8277270763612068,0.7813388072275437,0.7302333195662045,0.6748318892984803,0.6155557923456617,0.5528263046290405,0.48706470206990804,0.4186922605895544,0.3481302561092711,0.27579996455034955,0.20212266183408067,0.12751962388175564,0.0524121266146656,-0.022778554045898458,-0.09763114217864519,-0.17172436186228351,-0.24463743755830317,-0.3159931895778846,-0.38549124698892134,-0.45283905734023555,-0.517744068180654,-0.5799137270590035,-0.6390554815241063,-0.6948767791247907,-0.7470850674098791,-0.7953877939281996,-0.8394924062285749,-0.8791063518598325,-0.9139370783707957,-0.9436920333102916,-0.9680786642271442,-0.9868044186701797,-0.9995767441882225,-1.0061030883300988,-1.0061030883300988,-0.9995767441882226,-0.9868044186701795,-0.9680786642271442,-0.9436920333102917,-0.9139370783707959,-0.8791063518598327,-0.839492406228575,-0.7953877939281997,-0.7470850674098792,-0.6948767791247908,-0.6390554815241064,-0.5799137270590036,-0.5177440681806541,-0.45283905734023566,-0.38549124698892145,-0.3159931895778847,-0.24463743755830333,-0.17172436186228363,-0.09763114217864623,-0.022778554045898635,0.05241212661466458,0.12751962388175545,0.20212266183407965,0.2757999645503495,0.3481302561092702,0.41869226058955433,0.4870647020699072,0.5528263046290411,0.6155557923456616,0.6748318892984807,0.7302333195662044,0.7813388072275441,0.8277270763612067,0.8689768510459027,0.9046668553603393,0.9344457732755767,0.9583092223207724,0.9763601640383378,0.988701591814055,0.9954364990337082,0.9966678790830804,0.9924987253479546,0.9830320312141148,0.9683707900673438,0.9486179952934253,0.9238766402781429,0.8942497184072791,0.8598402230666184,0.8207511476419427,0.7770854855190372,0.7289462300836833,0.6764363747216665,0.6196590914669068,0.5588083056079993,0.4943160804029725,0.42665306710790946,0.35628991697888707,0.28369728127198834,0.2093458112432903,0.13370615814887618,0.05724897324482244,-0.01955509221278717,-0.0962353869678764,-0.1723212597643614,-0.24734205934616604,-0.3208271344572067,-0.3923058338414067,-0.4613075062426827,-0.5273615004049566,-0.5899971650721496,-0.6487466646734089,-0.7032854031769116,-0.7534971677833368,-0.7992821667696298,-0.8405406084127319,-0.8771727009895882,-0.9090786527771405,-0.9361586720523332,-0.9583129670921086,-0.975441746173411,-0.9874452175731823,-0.9942235895683673,-0.9956770704359083,-0.9917058684527487,-0.982210191895832,-0.9670902490421013,-0.9462462481685003,-0.919578397551972,-0.8870028116139531,-0.8487027782967074,-0.8050832774313974,-0.7565559992538965,-0.7035326340000764,-0.6464248719058151,-0.5856444032069836,-0.5216029181394563,-0.45471210693910596,-0.385383659841803,-0.3140292670834278,-0.24106061889985037,-0.16688940552694437,-0.09192731720057984,-0.01658604415663739,0.05872272336901274,0.1335872951404973,0.20759598092194598,0.2803432377378124,0.3514710980661288,0.4206437864103973,0.4875256519743702,0.5517810439617903,0.6130743115764098,0.6710698040219782,0.7254318705022468,0.7758248602209602,0.8219131223818699,0.8633610061887248,0.8998328608452757,0.9309930355552689,0.9565058795224551,0.9760357419505832,0.9892469720434034,0.995803919004663,0.9953709320381123]}], {"template":{"layout":{"coloraxis":{"colorbar":{"ticks":"","outlinewidth":0}},"xaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"hovermode":"closest","paper_bgcolor":"white","geo":{"showlakes":true,"showland":true,"landcolor":"#E5ECF6","bgcolor":"white","subunitcolor":"white","lakecolor":"white"},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"yaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"shapedefaults":{"line":{"color":"#2a3f5f"}},"hoverlabel":{"align":"left"},"mapbox":{"style":"light"},"polar":{"angularaxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"autotypenumbers":"strict","font":{"color":"#2a3f5f"},"ternary":{"baxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"aaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"annotationdefaults":{"arrowhead":0,"arrowwidth":1,"arrowcolor":"#2a3f5f"},"plot_bgcolor":"#E5ECF6","title":{"x":0.05},"scene":{"xaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"zaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"yaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"}},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"]},"data":{"barpolar":[{"type":"barpolar","marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"carpet":[{"aaxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"},"type":"carpet","baxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"parcoords":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"parcoords"}],"scatter":[{"type":"scatter","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2dcontour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2dcontour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"mesh3d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"mesh3d"}],"surface":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"surface","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram":[{"type":"histogram","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"pie":[{"type":"pie","automargin":true}],"choropleth":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"choropleth"}],"heatmapgl":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmapgl","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"bar":[{"type":"bar","error_y":{"color":"#2a3f5f"},"error_x":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"heatmap":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmap","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contourcarpet"}],"table":[{"type":"table","header":{"line":{"color":"white"},"fill":{"color":"#C8D4E3"}},"cells":{"line":{"color":"white"},"fill":{"color":"#EBF0F8"}}}],"scatter3d":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"scatter3d","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2d","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}]}},"height":500,"margin":{"l":50,"b":50,"r":50,"t":60},"width":500}, {"editable":false,"responsive":true,"staticPlot":false,"scrollZoom":true}, diff --git a/previews/PR334/histogram-uniform.html b/previews/PR334/histogram-uniform.html index f2e036166..3d4c68723 100644 --- a/previews/PR334/histogram-uniform.html +++ b/previews/PR334/histogram-uniform.html @@ -1,7 +1,7 @@ -
+

Private API

Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.

BasicBSpline.r_nomialFunction

Calculate $r$-nomial coefficient

r_nomial(n, k, r)

\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]

source
BasicBSpline._lower_RFunction

Internal methods for obtaining a B-spline space with one degree lower.

\[\begin{aligned} +Private API · BasicBSpline.jl

Private API

Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.

BasicBSpline.r_nomialFunction

Calculate $r$-nomial coefficient

r_nomial(n, k, r)

\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]

source
BasicBSpline._lower_RFunction

Internal methods for obtaining a B-spline space with one degree lower.

\[\begin{aligned} \mathcal{P}[p,k] &\mapsto \mathcal{P}[p-1,k] \\ D^r\mathcal{P}[p,k] &\mapsto D^{r-1}\mathcal{P}[p-1,k] -\end{aligned}\]

source
+\end{aligned}\]

source
diff --git a/previews/PR334/interpolation_cubic.html b/previews/PR334/interpolation_cubic.html index d4ce1512e..f3552def1 100644 --- a/previews/PR334/interpolation_cubic.html +++ b/previews/PR334/interpolation_cubic.html @@ -1,7 +1,7 @@ -
+
+
+
+

Refinement

Documentation

Example

Define original manifold

p = 2 # degree of polynomial
+Refinement · BasicBSpline.jl

Refinement

Documentation

Example

Define original manifold

p = 2 # degree of polynomial
 k = KnotVector(1:8) # knot vector
 P = BSplineSpace{p}(k) # B-spline space
 rand_a = [SVector(rand(), rand()) for i in 1:dim(P), j in 1:dim(P)]
 a = [SVector(2*i-6.5, 2*j-6.5) for i in 1:dim(P), j in 1:dim(P)] + rand_a # random
-M = BSplineManifold(a,(P,P)) # Define B-spline manifold

h-refinement

Insert additional knots to knot vector.

julia> k₊ = (KnotVector([3.3,4.2]),KnotVector([3.8,3.2,5.3])) # additional knot vectors(KnotVector([3.3, 4.2]), KnotVector([3.2, 3.8, 5.3]))
julia> M_h = refinement(M, k₊) # refinement of B-spline manifoldBSplineManifold{2, (2, 2), StaticArraysCore.SVector{2, Float64}, Tuple{BSplineSpace{2, Float64, KnotVector{Float64}}, BSplineSpace{2, Float64, KnotVector{Float64}}}}((BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.3, 4.0, 4.2, 5.0, 6.0, 7.0, 8.0])), BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.2, 3.8, 4.0, 5.0, 5.3, 6.0, 7.0, 8.0]))), StaticArraysCore.SVector{2, Float64}[[-3.7392559679567654, -3.783078079871714] [-3.597411705002145, -2.6270907448400385] … [-4.27252342702906, 2.44794251443626] [-4.010429310201709, 3.869439330221196]; [-2.328731904641716, -4.1480930630807595] [-2.275419510381314, -2.8615581264721692] … [-2.736955136391798, 2.5020454657912223] [-2.786990222003846, 3.8096177268489324]; … ; [2.359972932445208, -3.6129585850258517] [2.373167856283101, -2.9446206124413257] … [2.210716406024899, 2.602631448306355] [2.3997592455372003, 3.5324898804805147]; [4.093841853317975, -3.9061261483801712] [3.8504632555175444, -2.9860983311743827] … [4.331025079311032, 2.333423772424664] [4.480663191353303, 4.436571553462537]])
julia> save_png("2dim_h-refinement.png", M_h) # save image

Note that this shape and the last shape are equivalent.

p-refinement

Increase the polynomial degree of B-spline manifold.

julia> p₊ = (Val(1), Val(2)) # additional degrees(Val{1}(), Val{2}())
julia> M_p = refinement(M, p₊) # refinement of B-spline manifoldBSplineManifold{2, (3, 4), StaticArraysCore.SVector{2, Float64}, Tuple{BSplineSpace{3, Int64, KnotVector{Int64}}, BSplineSpace{4, Int64, KnotVector{Int64}}}}((BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8])), BSplineSpace{4, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8]))), StaticArraysCore.SVector{2, Float64}[[-3.327939887958376, -3.381062882382532] [-3.2286534014564956, -2.3898453165277354] … [-3.857369028126979, 2.625613347418197] [-3.750274329305369, 3.444604754180493]; [-1.9190826728891883, -3.6996476508119316] [-1.8954644502285198, -2.596850938310199] … [-2.320089840437407, 2.6673570013295036] [-2.4013083859231266, 3.417615645058782]; … ; [2.63663136518713, -3.36586722890932] [2.6119919237133846, -2.773961995558151] … [2.5855688772510934, 2.690164285500753] [2.692907338976954, 3.352168201374152]; [3.7212735564249955, -3.491398425417405] [3.554093269596626, -2.759665500609979] … [3.9960174259147876, 2.6027151956081522] [4.087903053338675, 3.7248325816241836]])
julia> save_png("2dim_p-refinement.png", M_p) # save image

Note that this shape and the last shape are equivalent.

+M = BSplineManifold(a,(P,P)) # Define B-spline manifold

h-refinement

Insert additional knots to knot vector.

julia> k₊ = (KnotVector([3.3,4.2]),KnotVector([3.8,3.2,5.3])) # additional knot vectors(KnotVector([3.3, 4.2]), KnotVector([3.2, 3.8, 5.3]))
julia> M_h = refinement(M, k₊) # refinement of B-spline manifoldBSplineManifold{2, (2, 2), StaticArraysCore.SVector{2, Float64}, Tuple{BSplineSpace{2, Float64, KnotVector{Float64}}, BSplineSpace{2, Float64, KnotVector{Float64}}}}((BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.3, 4.0, 4.2, 5.0, 6.0, 7.0, 8.0])), BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.2, 3.8, 4.0, 5.0, 5.3, 6.0, 7.0, 8.0]))), StaticArraysCore.SVector{2, Float64}[[-3.7392559679567654, -3.783078079871714] [-3.597411705002145, -2.6270907448400385] … [-4.27252342702906, 2.44794251443626] [-4.010429310201709, 3.869439330221196]; [-2.328731904641716, -4.1480930630807595] [-2.275419510381314, -2.8615581264721692] … [-2.736955136391798, 2.5020454657912223] [-2.786990222003846, 3.8096177268489324]; … ; [2.359972932445208, -3.6129585850258517] [2.373167856283101, -2.9446206124413257] … [2.210716406024899, 2.602631448306355] [2.3997592455372003, 3.5324898804805147]; [4.093841853317975, -3.9061261483801712] [3.8504632555175444, -2.9860983311743827] … [4.331025079311032, 2.333423772424664] [4.480663191353303, 4.436571553462537]])
julia> save_png("2dim_h-refinement.png", M_h) # save image

Note that this shape and the last shape are equivalent.

p-refinement

Increase the polynomial degree of B-spline manifold.

julia> p₊ = (Val(1), Val(2)) # additional degrees(Val{1}(), Val{2}())
julia> M_p = refinement(M, p₊) # refinement of B-spline manifoldBSplineManifold{2, (3, 4), StaticArraysCore.SVector{2, Float64}, Tuple{BSplineSpace{3, Int64, KnotVector{Int64}}, BSplineSpace{4, Int64, KnotVector{Int64}}}}((BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8])), BSplineSpace{4, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8]))), StaticArraysCore.SVector{2, Float64}[[-3.327939887958376, -3.381062882382532] [-3.2286534014564956, -2.3898453165277354] … [-3.857369028126979, 2.625613347418197] [-3.750274329305369, 3.444604754180493]; [-1.9190826728891883, -3.6996476508119316] [-1.8954644502285198, -2.596850938310199] … [-2.320089840437407, 2.6673570013295036] [-2.4013083859231266, 3.417615645058782]; … ; [2.63663136518713, -3.36586722890932] [2.6119919237133846, -2.773961995558151] … [2.5855688772510934, 2.690164285500753] [2.692907338976954, 3.352168201374152]; [3.7212735564249955, -3.491398425417405] [3.554093269596626, -2.759665500609979] … [3.9960174259147876, 2.6027151956081522] [4.087903053338675, 3.7248325816241836]])
julia> save_png("2dim_p-refinement.png", M_p) # save image

Note that this shape and the last shape are equivalent.

diff --git a/previews/PR334/math/index.html b/previews/PR334/math/index.html index d7a4f80ec..8e552127c 100644 --- a/previews/PR334/math/index.html +++ b/previews/PR334/math/index.html @@ -1,3 +1,3 @@ Introduction · BasicBSpline.jl

Mathematical properties of B-spline

Introduction

B-spline is a mathematical object, and it has a lot of application. (e.g. Geometric representation: NURBS, Interpolation, Numerical analysis: IGA)

In this page, we'll explain the mathematical definitions and properties of B-spline with Julia code. Before running the code in the following section, you need to import packages:

using BasicBSpline
-using Plots; plotly()
Plots.PlotlyBackend()

Notice

Some of notations in this page are our original, but these are well-considered results.

References

Most of this documentation around B-spline is self-contained. If you want to learn more, the following resources are recommended.

日本語の文献では以下がおすすめです。

+using Plots; plotly()
Plots.PlotlyBackend()

Notice

Some of notations in this page are our original, but these are well-considered results.

References

Most of this documentation around B-spline is self-contained. If you want to learn more, the following resources are recommended.

日本語の文献では以下がおすすめです。

diff --git a/previews/PR334/plotlyjs/index.html b/previews/PR334/plotlyjs/index.html index 1b0052bd7..2abf4b12c 100644 --- a/previews/PR334/plotlyjs/index.html +++ b/previews/PR334/plotlyjs/index.html @@ -37,4 +37,4 @@ zs_f = getindex.(M.(ts),3) fig = Plot(scatter3d(x=xs_a, y=ys_a, z=zs_a, name="control points", line_color="blue", marker_size=8)) addtraces!(fig, scatter3d(x=xs_f, y=ys_f, z=zs_f, name="B-spline curve", mode="lines", line_color="red")) -relayout!(fig, width=500, height=500) +relayout!(fig, width=500, height=500) diff --git a/previews/PR334/plots-arc.html b/previews/PR334/plots-arc.html index 57c72d6dc..5bb4001d1 100644 --- a/previews/PR334/plots-arc.html +++ b/previews/PR334/plots-arc.html @@ -1,7 +1,7 @@ -
+
+
+
+
+
+
+
+
+
+
+
+