-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinetune_pose.py
301 lines (221 loc) · 11.5 KB
/
finetune_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""Author: Hyung-Kwon Ko (hyungkwonko@gmail.com)"""
import os
import time
import copy
from tqdm import tqdm
import logging
import argparse
import collections
from datetime import datetime
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import transforms
from vggface2.utils import load_state_dict
import vggface2.senet as SENet
from datasets.vggface2_sg2 import StyleGAN2_Data
def save_image(input, outdir, pred):
plot_style = dict(marker='o', markersize=4, linestyle='-', lw=2)
pred_type = collections.namedtuple('prediction_type', ['slice', 'color'])
pred_types = {'face': pred_type(slice(0, 17), (0.682, 0.780, 0.909, 0.5)),
'eyebrow1': pred_type(slice(17, 22), (1.0, 0.498, 0.055, 0.4)),
'eyebrow2': pred_type(slice(22, 27), (1.0, 0.498, 0.055, 0.4)),
'nose': pred_type(slice(27, 31), (0.345, 0.239, 0.443, 0.4)),
'nostril': pred_type(slice(31, 36), (0.345, 0.239, 0.443, 0.4)),
'eye1': pred_type(slice(36, 42), (0.596, 0.875, 0.541, 0.3)),
'eye2': pred_type(slice(42, 48), (0.596, 0.875, 0.541, 0.3)),
'lips': pred_type(slice(48, 60), (0.596, 0.875, 0.541, 0.3)),
'teeth': pred_type(slice(60, 68), (0.596, 0.875, 0.541, 0.4))
}
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.imshow(input)
for pred_type in pred_types.values():
ax.plot(pred[pred_type.slice, 0],
pred[pred_type.slice, 1],
color=pred_type.color, **plot_style)
ax.axis('off')
plt.savefig(outdir)
def train(args):
logging.info('Initializing Datasets and Data_loader...')
data_transforms = transforms.Compose([
transforms.Resize(args.pretrained_size),
transforms.CenterCrop(args.pretrained_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data = {
'train': StyleGAN2_Data(root=args.root, split='train', lname=args.lname, transform=data_transforms, scale_size=args.image_size),
'val': StyleGAN2_Data(root=args.root, split='val', lname=args.lname, transform=data_transforms, scale_size=args.image_size)
}
data_loader = {
'train': torch.utils.data.DataLoader(data['train'], batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False),
'val': torch.utils.data.DataLoader(data['val'], batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False)
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = initialize_model(args)
model = model.to(device)
logging.info(model)
logging.info('Params to learn:')
if args.feature_extract:
params_to_update = []
for i, (name, param) in enumerate(model.named_parameters()):
if param.requires_grad == True:
params_to_update.append(param)
logging.info(f'{i}. param.name: {name}')
# logging.info(f'{i}. param.shape: {param.shape}')
else:
params_to_update = model.parameters()
for i, (name, param) in enumerate(model.named_parameters()):
if param.requires_grad == True:
logging.info(f'{i}: {name}')
optimizer = optim.Adam(params_to_update, lr=args.lr, weight_decay=1e-5) # l2 norm
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
criterion = nn.MSELoss()
logging.info('Training starts!')
since = time.time()
val_loss_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = float('inf')
for epoch in range(args.num_epochs):
logging.info('-' * 10)
logging.info(f'Epoch {epoch}/{args.num_epochs - 1}')
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
if epoch % 1 == 0:
model.eval()
else:
continue
running_loss = 0.0
for batch in tqdm(data_loader[phase]):
inputs = batch['image'].to(device)
labels = batch['label'].to(device)
indices = batch['meta']['index']
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
outputs = outputs.to(float)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(data_loader[phase].dataset)
logging.info(f'{phase} Loss: {epoch_loss:.4f}')
if phase == 'val':
val_loss_history.append(epoch_loss)
if epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(best_model_wts, os.path.join(args.ckpt_dir, f'senet_ckpt_{args.lr}_{args.weight_decay}_{args.feature_extract}_{args.out_features}.pth'))
if args.save_fig and epoch % args.save_epoch == 0:
outputs = outputs.cpu().numpy()
for i, (index, output) in enumerate(zip(indices, outputs)):
if i > 3:
break
output = output.reshape(1, -1)
pred = data[phase].inv_scale_label(output)
pred = pred.reshape(-1, 2)
input = data[phase].get_image(index, os.path.join(args.root, phase))
save_image(input, os.path.join(args.val_save_dir, f'out_{index}_{epoch}.png'), pred)
if epoch == 0:
answ = data[phase].labels_original[index]
answ = answ.reshape(-1, 2)
save_image(input, os.path.join(args.val_save_dir, f'out_{index}_ans.png'), answ)
scheduler.step()
time_elapsed = time.time() - since
logging.info(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
logging.info(f'Best val Loss: {best_loss:4f}')
model.load_state_dict(best_model_wts)
return model, val_loss_history
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
def initialize_model(args):
model = SENet.senet50(num_classes=args.n_identity, include_top=True) # forward output w/ FC layer (dim: 138=NUM_OUT_FT)
# model = SENet.senet50(num_classes=N_IDENTITY, include_top=False) # forward output w/o FC layer (dim: 2048)
if args.mode == 'train':
load_state_dict(model, args.pretrained_path)
set_parameter_requires_grad(model, args.feature_extract)
num_in_ft = model.fc.in_features # 2048
model.fc = nn.Linear(num_in_ft, args.out_features)
return model
else:
num_in_ft = model.fc.in_features # 2048
model.fc = nn.Linear(num_in_ft, args.out_features)
model.load_state_dict(torch.load(args.model_path))
return model
def test(args):
model = initialize_model(args)
data_transforms = transforms.Compose([
transforms.Resize(args.pretrained_size),
transforms.CenterCrop(args.pretrained_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data = StyleGAN2_Data(root=args.root, split='test', fname=args.lname, transform=data_transforms, scale_size=args.image_size)
data_loader = torch.utils.data.DataLoader(data, batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
running_loss = 0.0
criterion = nn.MSELoss()
for batch in tqdm(data_loader):
inputs = batch['image'].to(device)
labels = batch['label'].to(device)
outputs = model(inputs)
with torch.no_grad():
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(data_loader.dataset)
print(f'Loss: {epoch_loss:.4f}')
# for i in range(5):
# print(f"Sample latents {labels[i].cpu().detach().numpy()}, Sample output: {outputs[i].cpu().detach().numpy()}")
def main():
parser = argparse.ArgumentParser("PyTorch SE-Net Fine-tuning Code")
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'], help='train/test')
parser.add_argument('--image_size', type=int, default=256, help='training data size == (x.size[0])')
parser.add_argument('--out_features', type=int, default=3, help='number of classes == y')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--num_epochs', type=int, default=30, help='number of epochs to run')
parser.add_argument('--lr', type=float, default=1e-6, help='learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-3, help='l2 norm')
parser.add_argument('--feature_extract', type=int, choices=[0, 1], default=0, help='finetune fc layer only (True, 1) / all layers (False, 0)')
parser.add_argument('--root', type=str, default='data', help='training data dir')
parser.add_argument('--lname', type=str, default='pose', help='label file name')
parser.add_argument('--pretrained_path', type=str, default='./pretrained/senet50_scratch_weight.pkl', help='pretrained SENet model path')
parser.add_argument('--model_path', type=str, default='./ckpt/senet_ckpt_0.001.pth', help='pretrained SENet model path')
parser.add_argument('--save_epoch', type=int, default=1, help='epoch to save images for validation')
parser.add_argument('--val_save_dir', type=str, default='./out/finetune', help='save directory for validation file')
parser.add_argument('--log_dir', type=str, default='log', help='save directory for log file')
parser.add_argument('--ckpt_dir', type=str, default='ckpt', help='save directory for checkpoint file')
parser.add_argument('--n_identity', type=int, default=8631, help='number of classes pretrained in SENet')
parser.add_argument('--pretrained_size', type=int, default=224, help='image size pretrained in SENet')
parser.add_argument('--save_fig', type=int, default=0, help='save predicted result as figures')
args = parser.parse_args()
os.makedirs(args.val_save_dir, exist_ok=True)
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.ckpt_dir, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d,%H:%M:%S',
handlers=[
logging.FileHandler(os.path.join(args.log_dir, f'senet_finetune_{datetime.now().time()}.log')),
logging.StreamHandler()
]
)
logging.info(f'PyTorch Version: {torch.__version__}')
logging.info(f'Torchvision Version: {torchvision.__version__}')
logging.info(f'args: {args}')
if args.mode == 'train':
train(args)
else:
test(args)
if __name__ == '__main__':
main()