diff --git a/deepmd/pt/utils/dataset.py b/deepmd/pt/utils/dataset.py index 83c147ef8f..68d4a09ce4 100644 --- a/deepmd/pt/utils/dataset.py +++ b/deepmd/pt/utils/dataset.py @@ -477,10 +477,7 @@ def preprocess(self, batch): if "find_" in kk: pass else: - batch[kk] = torch.tensor( - batch[kk], - dtype=env.GLOBAL_PT_FLOAT_PRECISION - ) + batch[kk] = torch.tensor(batch[kk], dtype=env.GLOBAL_PT_FLOAT_PRECISION) if self._data_dict[kk]["atomic"]: batch[kk] = batch[kk].view( n_frames, -1, self._data_dict[kk]["ndof"] @@ -521,12 +518,9 @@ def preprocess(self, batch): batch["nlist_type"] = nlist_type natoms_extended = max([item.shape[0] for item in shift]) batch["shift"] = torch.zeros( - (n_frames, natoms_extended, 3), - dtype=env.GLOBAL_PT_FLOAT_PRECISION - ) - batch["mapping"] = torch.zeros( - (n_frames, natoms_extended), dtype=torch.long + (n_frames, natoms_extended, 3), dtype=env.GLOBAL_PT_FLOAT_PRECISION ) + batch["mapping"] = torch.zeros((n_frames, natoms_extended), dtype=torch.long) for i in range(len(shift)): natoms_tmp = shift[i].shape[0] batch["shift"][i, :natoms_tmp] = shift[i] @@ -562,16 +556,13 @@ def single_preprocess(self, batch, sid): pass else: batch[kk] = torch.tensor( - batch[kk][sid], - dtype=env.GLOBAL_PT_FLOAT_PRECISION + batch[kk][sid], dtype=env.GLOBAL_PT_FLOAT_PRECISION ) if self._data_dict[kk]["atomic"]: batch[kk] = batch[kk].view(-1, self._data_dict[kk]["ndof"]) for kk in ["type", "real_natoms_vec"]: if kk in batch.keys(): - batch[kk] = torch.tensor( - batch[kk][sid], dtype=torch.long - ) + batch[kk] = torch.tensor(batch[kk][sid], dtype=torch.long) clean_coord = batch.pop("coord") clean_type = batch.pop("type") nloc = clean_type.shape[0] @@ -665,28 +656,22 @@ def single_preprocess(self, batch, sid): NotImplementedError(f"Unknown noise type {self.noise_type}!") noised_coord = _clean_coord.clone().detach() noised_coord[coord_mask] += noise_on_coord - batch["coord_mask"] = torch.tensor( - coord_mask, dtype=torch.bool - ) + batch["coord_mask"] = torch.tensor(coord_mask, dtype=torch.bool) else: noised_coord = _clean_coord batch["coord_mask"] = torch.tensor( - np.zeros_like(coord_mask, dtype=bool), - dtype=torch.bool + np.zeros_like(coord_mask, dtype=bool), dtype=torch.bool ) # add mask for type if self.mask_type: masked_type = clean_type.clone().detach() masked_type[type_mask] = self.mask_type_idx - batch["type_mask"] = torch.tensor( - type_mask, dtype=torch.bool - ) + batch["type_mask"] = torch.tensor(type_mask, dtype=torch.bool) else: masked_type = clean_type batch["type_mask"] = torch.tensor( - np.zeros_like(type_mask, dtype=bool), - dtype=torch.bool + np.zeros_like(type_mask, dtype=bool), dtype=torch.bool ) if self.pbc: _coord = normalize_coord(noised_coord, region, nloc) diff --git a/deepmd/pt/utils/preprocess.py b/deepmd/pt/utils/preprocess.py index 27acdb9209..18c798138e 100644 --- a/deepmd/pt/utils/preprocess.py +++ b/deepmd/pt/utils/preprocess.py @@ -134,15 +134,9 @@ def append_neighbors(coord, region: Region3D, atype, rcut: float): xi = torch.arange(-ngcell[0], ncell[0] + ngcell[0], 1) yi = torch.arange(-ngcell[1], ncell[1] + ngcell[1], 1) zi = torch.arange(-ngcell[2], ncell[2] + ngcell[2], 1) - xyz = xi.view(-1, 1, 1, 1) * torch.tensor( - [1, 0, 0], dtype=torch.long - ) - xyz = xyz + yi.view(1, -1, 1, 1) * torch.tensor( - [0, 1, 0], dtype=torch.long - ) - xyz = xyz + zi.view(1, 1, -1, 1) * torch.tensor( - [0, 0, 1], dtype=torch.long - ) + xyz = xi.view(-1, 1, 1, 1) * torch.tensor([1, 0, 0], dtype=torch.long) + xyz = xyz + yi.view(1, -1, 1, 1) * torch.tensor([0, 1, 0], dtype=torch.long) + xyz = xyz + zi.view(1, 1, -1, 1) * torch.tensor([0, 0, 1], dtype=torch.long) xyz = xyz.view(-1, 3) mask_a = (xyz >= 0).all(dim=-1) mask_b = (xyz < ncell).all(dim=-1) @@ -186,9 +180,7 @@ def build_neighbor_list( distance = coord_l - coord_r distance = torch.linalg.norm(distance, dim=-1) DISTANCE_INF = distance.max().detach() + rcut - distance[:nloc, :nloc] += ( - torch.eye(nloc, dtype=torch.bool) * DISTANCE_INF - ) + distance[:nloc, :nloc] += torch.eye(nloc, dtype=torch.bool) * DISTANCE_INF if min_check: if distance.min().abs() < 1e-6: RuntimeError("Atom dist too close!") diff --git a/deepmd/pt/utils/stat.py b/deepmd/pt/utils/stat.py index 4826d0fb88..eec7179bcd 100644 --- a/deepmd/pt/utils/stat.py +++ b/deepmd/pt/utils/stat.py @@ -64,10 +64,7 @@ def make_stat_input(datasets, dataloaders, nbatches): dtype=env.GLOBAL_PT_FLOAT_PRECISION, ) else: - shape = torch.zeros( - (n_frames, extend), - dtype=torch.long - ) + shape = torch.zeros((n_frames, extend), dtype=torch.long) for i in range(len(item)): natoms_tmp = l[i].shape[0] shape[i, :natoms_tmp] = l[i] diff --git a/source/tests/pt/test_embedding_net.py b/source/tests/pt/test_embedding_net.py index 312af1a8c8..407f4949b5 100644 --- a/source/tests/pt/test_embedding_net.py +++ b/source/tests/pt/test_embedding_net.py @@ -7,6 +7,7 @@ import numpy as np import tensorflow.compat.v1 as tf import torch + from deepmd.pt.utils import ( env, ) @@ -153,11 +154,15 @@ def test_consistency(self): pt_coord = self.torch_batch["coord"].to(env.DEVICE) pt_coord.requires_grad_(True) - index = self.torch_batch["mapping"].unsqueeze(-1).expand(-1, -1, 3).to(env.DEVICE) + index = ( + self.torch_batch["mapping"].unsqueeze(-1).expand(-1, -1, 3).to(env.DEVICE) + ) extended_coord = torch.gather(pt_coord, dim=1, index=index) extended_coord = extended_coord - self.torch_batch["shift"].to(env.DEVICE) extended_atype = torch.gather( - self.torch_batch["atype"].to(env.DEVICE), dim=1, index=self.torch_batch["mapping"].to(env.DEVICE) + self.torch_batch["atype"].to(env.DEVICE), + dim=1, + index=self.torch_batch["mapping"].to(env.DEVICE), ) descriptor_out, _, _, _, _ = descriptor( extended_coord, diff --git a/source/tests/pt/test_model.py b/source/tests/pt/test_model.py index 250ccb164d..e87a53969c 100644 --- a/source/tests/pt/test_model.py +++ b/source/tests/pt/test_model.py @@ -6,6 +6,7 @@ import numpy as np import tensorflow.compat.v1 as tf import torch + from deepmd.pt.utils import ( env, ) @@ -343,10 +344,16 @@ def test_consistency(self): batch["natoms_vec"], device=batch["coord"].device ).unsqueeze(0) model_predict = my_model( - batch["coord"].to(env.DEVICE), batch["atype"].to(env.DEVICE), batch["box"].to(env.DEVICE), do_atomic_virial=True + batch["coord"].to(env.DEVICE), + batch["atype"].to(env.DEVICE), + batch["box"].to(env.DEVICE), + do_atomic_virial=True, ) model_predict_1 = my_model( - batch["coord"].to(env.DEVICE), batch["atype"].to(env.DEVICE), batch["box"].to(env.DEVICE), do_atomic_virial=False + batch["coord"].to(env.DEVICE), + batch["atype"].to(env.DEVICE), + batch["box"].to(env.DEVICE), + do_atomic_virial=False, ) p_energy, p_force, p_virial, p_atomic_virial = ( model_predict["energy"],