forked from bendangnuksung/Image-OutPainting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
85 lines (69 loc) · 1.98 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import os
from random import shuffle
DATA_PATH = "data/prepared_data/train"
TEST_PATH = "data/prepared_data/test"
class Data():
def __init__(self):
self.X_counter = 0
self.file_counter = 0
self.files = os.listdir(DATA_PATH)
self.files = [file for file in self.files if '.npy' in file]
shuffle(self.files)
self._load_data()
def _load_data(self):
datas = np.load(os.path.join(DATA_PATH, self.files[self.file_counter]))
self.X = []
for data in datas:
self.X.append(data)
shuffle(self.X)
self.X = np.asarray(self.X)
self.file_counter += 1
def get_data(self, batch_size):
if self.X_counter >= len(self.X):
if self.file_counter > len(self.files) - 1:
print("Data exhausted, Re Initialize")
self.__init__()
return None
else:
self._load_data()
self.X_counter = 0
if self.X_counter + batch_size <= len(self.X):
remaining = len(self.X) - (self.X_counter)
X = self.X[self.X_counter: self.X_counter + batch_size]
else:
X = self.X[self.X_counter: ]
self.X_counter += batch_size
return X
class TestData():
def __init__(self):
self.X_counter = 0
self.file_counter = 0
self.files = os.listdir(TEST_PATH)
self.files = [file for file in self.files if '.npy' in file]
shuffle(self.files)
self._load_data()
def _load_data(self):
datas = np.load(os.path.join(TEST_PATH, self.files[self.file_counter]))
self.X = []
for data in datas:
self.X.append(data)
shuffle(self.X)
self.X = np.asarray(self.X)
self.file_counter += 1
def get_data(self, batch_size):
if self.X_counter >= len(self.X):
if self.file_counter > len(self.files) - 1:
print("Data exhausted, Re Initialize")
self.__init__()
return None
else:
self._load_data()
self.X_counter = 0
if self.X_counter + batch_size <= len(self.X):
remaining = len(self.X) - (self.X_counter)
X = self.X[self.X_counter: self.X_counter + batch_size]
else:
X = self.X[self.X_counter: ]
self.X_counter += batch_size
return X